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Hamilton-Jacobi-Bellman theory of dissipative thermal availability
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~Received 12 December 1996!

We analyze a steady-state problem of maximum work delivered from a finite resource fluid and a bath, as the
dissipative, finite-time generalization of the evolutionary Carnot problem in which the temperature driving
force between two interacting subsystems varies with the contact time. The thermal capacity of the bath is very
large, so its intensive parameters do not change. At the classical, reversible limit, the instantaneous rates do
vanish due to the reversibility requirement, whereas in the generalized problem some inherent, rate-related
irreversibilities are inevitable, in particular those occurring in boundary layers at interfaces. Methods of the
optimal control and variational calculus are suitable to optimize nonlinear dynamics of the process. An ana-
lytical formalism, strongly analogous to those in analytical mechanics and optimal control theory, is effective
in thermodynamic optimization. A variational theory treats an infinite sequence of infinitesimal Curzon-
Ahlborn-Novikov processes as the theoretical model pertinent to develop the theory of a finite-resource fluid
interacting with a bath in a finite time, when the active exchange of the energy occurs through the working
fluid of participating engines, refrigerators, or heat pumps. The main application is the extension of the
classical availability~exergy! beyond the class of reversible processes. The generalized exergy is next dis-
cussed in terms of the finite intensity and finite duration of the process. Optimality of a definite irreversible
process is an essential feature for a finite duration. A link is shown between the process duration and the
optimal intensity measured in terms of a dissipative Hamiltonian. An interesting approach, based on the
Hamilton-Jacobi-Bellman equation for the irreversible availability and underlying work functionals~HJB
theory!, is developed. The HJB formulation is suitable for generation of numerical data of the work potentials,
by the standard recurrence equation of Bellman’s dynamic programming. Such an equation is, in fact, the sole
solving algorithm for functionals with constrained rates and states and with complex boundary conditions. It
will certainly be inevitable in the case of the problem generalization to mass transfer and chemical reactions.
An essential decrease of the maximal work received from an engine system and an increase of minimal work
added to a heat-pump system is shown in the high-rate regimes and for short durations of thermodynamic
processes. The results prove that the limits known from the theory of the classical availability should be
replaced by stronger limits obtained for finite-time processes, which are closer to reality. Hysteretic properties
are effective which cause the difference between the work supplied and delivered, for the inverted end states
of the process. The significance of these results for the theory of the structure creation and destruction is
underlined.@S1063-651X~97!12910-5#

PACS number~s!: 05.70.2a
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I. INTRODUCTION

Considerable progress has recently been achieved in
derstanding the thermodynamics of finite-rate and finite-ti
systems, including the theory of the Curzon-Ahlbor
Novikov engine or CAN engine@1,2#. This progress makes i
possible to accomplish the basic task of this paper: a fi
time extension of the theory of a resource interacting wit
bath, as the irreversible extension of the corresponding
versible problem@3#. A good review of various single-stag
CAN systems was presented by de Vos@4#. However, for the
purpose of the extension mentioned above, in which the t
mal parameters of the~finite! resource change in time, on
needs to deal with sequential CAN processes. In particu
dynamical models of infinite sequence of infinitesimal CA
processes arranged sequentially in order to accomplish
active~work producing! exchange of heat between two fluid
~in particular fluid and bath! were worked out@5,6#. It was
underlined therein that the sequence is the basic theore
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tool to define a rate- and duration-dependent function
available energy~exergy! which generalizes the classica
thermal exergy for finite-time processes with dissipation
curring in associated resistances. Some works on the fin
time exergy published to date@7–9# suffered from the ab-
sence of associated time evolution and particular functio
formulations which could comprise~in a single expression!
the potential property of the classical reversible compon
and the path-dependent property of the irreversible com
nent, in addition, these works did not make a distincti
between the finite-time availability of processes approach
and leaving equilibrium. This property was first emphasiz
only recently@10,11#. The property disappears in the rever
ible case of quasistatic processes, when the effect of re
tances does vanish, and the extended available energy
plifies to the classical exergy, inherently associated w
infinite durations.

The standard thermodynamic reasoning which leads to
classical exergy is based on the theory of a macrosco
body immersed in a bath, as known from various books@12–
14#. This classical exergy can also be obtained as the limit
work received from the sequence of a finite number of C
5051 © 1997 The American Physical Society
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5052 56STANISLAW SIENIUTYCZ
not cycles, at the limit when the number of these cycles te
to infinity @3#. For the purpose of the classical exergy, whi
is the reversible quantity, the commencement of the theo
ical scheme with a finite-stage model@3# is unnecessary; the
traditional model of infinitesimal stages is sufficient. Indee
the presence ofreversiblecycles, such as those used in R
@3#, fixes automatically the first-law efficiency of each infin
tesimal stage at the well-known~Carnot! level, h51
2Te/T, whereT is the instantaneous temperature of a fin
resource andTe is the temperature of the environment or
infinite bath. Since the unit mass of the resource releases
heatdq52cdT, wherec is the specific heat, the classic
thermal exergyEx follows by integration of the produc
2chdT52c(12Te/T)dT between the limitsT and Te.
The integration yields the well-known classical expressi
Eq. ~13! of the present paper, in a quite trivial way. How
ever, the problem becomes nontrivial in the case whe
finite-rate process is considered, since the efficiency dif
in this case from the Carnot efficiency. That efficien
should be determined before the integration of the prod
2chdT can be made. The integration then leads to a ge
alized available energy associated with the extremal rele
of the mechanical work in a finite time. Such generaliz
availability is the main task of this paper.

We shall distinguish two classes of active~work exchang-
ing! nonequilibrium systems. When the system is approa
ing equilibrium the work is released, and the system pl
the role of an engine. This case is called the engine mod
the system. The delivered workW is then positive by as-
sumption. Otherwise, when the system is departing from
equilibrium the work must be supplied, and the system pl
the role of a heat pump. This is the so-called heat-pu
mode of the system. The workW is then negative, which
means that the positive work (2W) must be supplied to the
system. To obtain the generalized exergy, optimization pr
lems are considered in this paper, which involve the ma
mum of the work delivered (maxW) and the minimum of the
work supplied@min(2W)#. The boundary states of the sy
tem at the engine mode are inverted boundary states o
system at the heat-pump mode.

The classical thermal availability is the non-negati
quantity. It is reversible in the sense that the magnitude
the work delivered during the reversible approaching of
system to equilibrium is equal to the magnitude of the wo
supplied, after the initial and final states are interchang
The first case corresponds with the engine mode of the
tem, the second with the heat-pump mode the system.
classical exergy is the quantity which defines bounds
work delivered from~or supplied to! very slow, reversible
processes. Our research is directed toward generalizatio
this classical idea for the finite-rate transitions. We show t
while the reversibility property is no longer valid for th
generalized~nonclassical! exergy, the thermokinetic bound
formed by this generalized exergy are stronger and he
more useful than classical thermostatic bounds. This subs
tiates the role of the generalized exergy for evaluation of
energy limits in practical systems@15#. It is quite essential
that these limits depend on the direction of the finite-tim
process, i.e., the limit corresponding with the change of
thermodynamic state fromA to B is not the same as the lim
associated with the change of the thermodynamic state f
s
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B to A for the same, finite, duration of the process.
In the present work we first briefly recapitulate some b

sic issues associated with derivation of basic work functi
als, and then direct our analysis toward an aspect whic
the derivation of the Hamilton-Jacobi-Bellman theory~HJB
theory! for functionals of dissipative exergy and work. Th
HJB theory is known as a basic ingredient of variation
calculus and optimal control@16–20#. The HJB formulation
is important to find data of the generalized available ene
and/or related work potentials by numerical methods. Th
methods, along with the associated Pontryagin’s maxim
principle @21#, are the main effective extremum seekin
methods for functionals in cases of constrained rates
states@22#. They will certainly be inevitable in the case o
the problem generalization to include the mass transfe
separation units and chemical reactions. However, Pon
gin’s maximum principle, in itself, does not generate an o
timal performance function~principal function! which is in
our case the generalized work potential or the dissipa
exergy, the main result which is sought. Otherwise, when
HJB equation is known, the exergy~or work! function is
explicit therein, and a discretization approach can transfo
the problem into Bellman’s functional equation which can
solved by standard solving techniques of discrete dyna
programming@23#. This is not in contradiction with the fac
that we restrict ourselves here to systems which are cont
ous from the physical viewpoint. Systems which are discr
by nature will be considered in a separate publication.

II. DIFFERENTIAL MODEL AND IRREVERSIBLE
GENERALIZATION OF CARNOT FORMULA

It is important to realize that no analysis of a single CA
unit is sufficient for the purpose of generalization of t
available energy to finite durations; rather a treatment o
complex system composed of infinite number of infinitesim
CAN units is necessary. The corresponding abstract sche
which is shown in Fig. 1, depicts an infinite sequence of
infinitesimal CAN processes. As its classical, reversible p
totype, it is still a highly abstract, work-producing system
which active heat exchange occurs between the two real
ids of finite thermal conductivities and containing their ow
boundary layers as dissipative components of the syst

FIG. 1. Model of power production and dissipative availabili
of flowing fluid accomplished in an infinite sequence of infinite
mal Curzon-Ahlborn-Novikov engines.
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56 5053HAMILTON-JACOBI-BELLMAN THEORY OF . . .
The mass flux of the first fluid~subscript 1! G is finite;
otherwise the amount or mass flux of the second fluid~sub-
script 2!, which plays the role of a bath or an environment,
infinite, which results in the constant temperature of the s
ond fluid, T25Te. The differential Carnot engines are lo
cated continuously between two separated boundary la
of the fluids, so that they work between their interfaces. T
abstract model of the active energy exchange, associ
with the power production, is a finite-rate, irreversible ge
eralization of the corresponding classical model of the av
able energy released from two fluids. In both cases~revers-
ible and not! the second fluid plays the role of the bath@12#.

Let us derive a mathematical model of infinitesimal CA
process at the steady state@6#. In the steady process the co
servation balances refer to the fluxes rather than to sto
The finite-mass fluxG of the first fluid, whose constant spe
cific heat capacity equalsc, is in the direction parallel tox
axis. Between the working fluid of the Carnot engine a
each of two fluids~each of a finite thermal conductivity! the
differential conductancesdg1 and dg2 are present, as th
system dissipative elements.

Changes of various physical quantities are measure
functions of the horizontal length coordinatex between its
initial valuex50 and any current valuex. The~partial! con-
ductancesg1 andg2 link the heat sources with the workin
fluid of the engine at high and low temperatures, and th
differentials can be expressed asdg15a1dA1 and dg2
5a2dA2 , wherea1 anda2 are the heat transfer coefficien
and dA1 and dA2 are upper and lower exchange surfa
areas. The areasA1 andA2 are components of the composi
area A whose differentialdA satisfies the equalitydA
5dA11dA2 . The heat powersQ1 and Q2 are the cumula-
tive heat fluxes flowing respectively from the upper reserv
and to the lower reservoir. For the differential lengthdx ~the
differential composite areadA! the fluid delivers the driving
heat powerdQ1 to the working medium of the infinitesima
Carnot engine. The temperature of the driving fluid~fluid 1!
decreases slightly along its path since this fluid releases
heat to run the engine. In the rangeT1.Te the differential
dT1 is negative for the engine and positive for the he
pump. The differential of the driving heat flux,dQ1 , de-
scribes the heat power subtracted from the flowing driv
fluid when its temperature decreases fromT1 to T11dT1 .
~Later the symbolT1 will be simplified toT and the driving
fluid temperature will be identified as the single state va
ableT of the process.!

We designate byT18 and T28 the upper and lower tem
peratures of the working agent which circulates in each
ferential Carnot engine. The high-grade heatdQ1 reaches the
engine part atT18 . In the simplest case of the Newtonia
heat exchange which we consider here, this heat is pro
tional to the temperature differenceT12T18 . Otherwise, the
low-temperature part of the Carnot subsystem releases
pure heat to an environment~or fluid 2! through another
conductance,dg2 . The flux of the released heat is propo
tional to the differenceT282T2 . This low-grade heat flows
between the low-temperature part of the engine~at T28! and
the environmental fluid, and reaches this fluid at the l
temperatureT25Te. We are dealing with the case when th
temperature of the bath fluid is constant and equal to tha
an environment~infinite bath of the second fluid,T25Te!.
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Let us first note that the local efficiency of an infinitesim
unit of the process ish5dW/dQ1 . While this local first-law
efficiency is still described by the Carnot formula

h512
T28

T18
~1!

this efficiency is nonetheless lower than the efficiency of
unit working between the boundary temperaturesT1 andT2
5Te, as the former applies to the intermediate temperatu
T18 and T28 . The intermediate temperatures are unknow
but they can be expressed in terms of the boundary temp
tures T1 and T2 and the efficiencyh. By solving Eq. ~1!
along with the reversible entropy balance of the Carnot d
ferential subsystem

dg1~T12T18!

T18
5

dg2~T282T2!

T28
, ~2!

one obtains the primed temperatures as certain function
the variablesT1 , T25Te, andh. Such an approach may b
regarded as the differential version of the finite-stage
proach which was developed earlier and applied to
single-stage and multistage systems@4,10#. The associated
driving heat fluxdQ15dg1(T12T18) is then found in the
form

dQ15dgFT12
1

~12h!
T2G , ~3!

from which the efficiency-power characteristic follows in th
form

h512
T2

T12dQ1/dg
. ~4!

In Eqs. ~3! and ~4! g is an appropriately definedoverall
conductance of the traditional heat transfer theory@6#. The
symbol Q1(g) refers to the function describing the drivin
heat flux along the conductance coordinateg. The associated
differential conductancedg may be expressed as the produ
a8dA, which further leads to the expression

dg5a8dA5a8avF dx5a8avFv dt. ~5!

Herea8 is an overall heat transfer coefficient referred to t
total differential areadA, av is the total specific exchang
area per unit volume of the system, andF is the system
cross-sectional area for the driving fluid, perpendicular tox.
The symbolv refers to the linear velocity of the driving
fluid, and t is the contact time of this fluid with the hea
exchange surface.

Now one can introduce the spatial scale of the proces
the quantity

Gc

a8avF
5HTU , ~6!

which has the length dimension and is known from the h
transfer theory as the so-called height of the heat transfer
(HTU). In Eq. ~6! it is referred to the driving fluid~fluid 1!.
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5054 56STANISLAW SIENIUTYCZ
A nondimensional lengthx/HTU5vt/HTU can next be de-
fined, which is known as the number of transfer units. Sin
it measures the extent of the system and it is proportiona
the contact time of the fluid with the energy exchange are
plays also the role of a nondimensional time, and this is w
it is designated byt,

t[
x

HTU
5

a8avF

Gc
x5

a8avFv
Gc

t. ~7!

In what follows the subscript 1 designating the first flu
~driving fluid! is no longer needed, and it will be omitted fo
simplicity of equations. From the energy balance of the dr
ing fluid, the heat power variableQ1 satisfies dQ
52Gc dT, wheredT is the differential temperature drop o
the first ~driving! fluid, and c is its specific heat. With the
above definitions and the differential heat balance of
driving fluid, the control termdQ1 /dg of Eq. ~4!, may be
written in the form

dQ/dg[2u52Gc dT/a8dA52Gc dT/a8avF dx

52GcdT/a8avFv dt52dT/dt ~8!

~subscript 1 omitted!. The negative of the derivativedQ/dg
is the control variableu of the process. In short, the abov
equation says thatu5Ṫ, or that the control variableu equals
the rate of the temperature change with respect to thenondi-
mensionaltime t. The controlu has the temperature dimen
sion.

With the help of Eqs.~5!–~8!, the efficiency formula~4!
becomes the simple, finite-rate generalization of the Ca
formula

h512
Te

T1Ṫ
. ~9!

When T.Te the derivativeṪ is negative for the engine
mode. This is because the driving fluid must release the
ergy to the engine to assure the work production. SimilarlṪ
is positive for the heat-pump mode. In the engine caseh
<hC , whereas in the heat-pump modeh>hC . When T
,Te the efficiencies~as the first-law efficiencies do! become
negative, nonethelessin each case the efficiency of a finit
time process deviates adversely from the Carnot efficie.
The simplicity of Eq.~9! is its great advantage when analy
cal studies are in question. With the help of Eq.~9! work
functionals can easily be formulated, as shown in Sec. II

III. WORK FUNCTIONALS FOR INFINITE SEQUENCE
OF INFINITESIMAL CAN PROCESSES

AND LINK WITH ENTROPY GENERATION

It is suitable to work with the vectorT5(T,t) composed
of the temperature and the number of heat transfer unit
order to describe finite-time thermal processes in which
temperatureT is the state variable andt is the nondimen-
sional time or the number of the heat transfer units. We a
designate byW the cumulative power input~output! for the
system at timet ~the length coordinate between 0 andx!. For
any process mode, the cumulative power delivered per
e
to
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fluid flow, W/G, is obtained by integration of the product o
h and dQ/G52cdT between an arbitrary initial tempera
ture Ti and an arbitrary final temperatureTf of the fluid. ~In
all designations that follows, the superscriptsf andi refer to
the final and initial states, respectively.! This integration
yields the specific work of theflowingfluid in the form of the
functional

WIT•T f I[W/G52E
Ti

Tf

cS 12
Te

T1Ṫ
D Ṫdt. ~10!

The notation@T i ,T f # means the passage of the vectorT
[(T,t) from its initial stateT i to its final stateT f . For the
above functional, the work maximization problem can
stated for the engine mode of the process

~W!max5maxH 2E
t i

t f

L~T,Ṫ!dtJ
5maxH 2E

t i

t f

cS 12
Te

Ṫ1T
D Ṫ dtJ , ~11!

whereas for the heat-pump mode~an inverse process!, one
states the minimization problem

~2W!min5mindT/dtE
t i

t f

L~T,Ṫ!dt

5mindT/dtE
t i

t f

cS 12
Te

Ṫ1T
D Ṫ dt. ~12!

For each process mode, a dissipative exergy of the fin
time process is obtained as the extremal of the related fu
tional with the appropriate integration limits~Ti5T and Tf

5Te for the engine mode of the process, andTi5Te and
Tf5T for the heat-pump mode of the process!.

The above Lagrange functionals represent the total po
per unit mass flux of the fluid which is the quantity of th
specific work dimension, hence their direct relation to t
specific exergy of the fluid at flow. In the quasistatic limit
vanishing rates,dT/dt50, the above work functionals rep
resent the change of theclassical exergy

W~dT/dt⇒0!52E
Ti

Tf

cS 12
Te

T DdT5Dh2TeDs. ~13!

This functional leads to the classical exergy for appropri
boundary temperatures,Ti5T and Tf5Te. Consequently,
Eq. ~10! represents the dissipative exergy change for
finite-time processes in which irreducible dissipative ph
nomena occurring in the boundary layers are essential.
the engine mode of the process, the dissipative exergy it
is obtained as themaximumof functional ~10!, with the in-
tegration limits Ti5T and Tf5Te, for the heat-pump
model—as the minimum of the negative of this function
with the integration limitsTi5Te andTf5T.

An alternative form of the specific work, Eq.~10!, can be
written as the functional
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56 5055HAMILTON-JACOBI-BELLMAN THEORY OF . . .
WITi ,Tf I[W/G5E
Ti

Tf F2cS 12
Te

T D ṪGdt

2TeE
Ti

Tf

c
Ṫ2

T~T1Ṫ!
dt

52E
Ti

Tf

cS 12
Te

T DdT

2TeSsITi ,T f I , ~14!

in which the first term is the classical ‘‘reversible’’ term an
the second term is the product of the equilibrium tempera
and the entropy production,

SsITi ,T f I5E
Ti

Tf

c
Ṫ2

T~T1Ṫ!
dt. ~15!

This has been shown at some length elsewhere@6,11#. The
entropy generation rate is referred here to the unit mass
of the driving fluid, hence the specific entropy dimension
the quantitySs . The quantitySs should be distinguished
from the specific entropy of the driving fluid,s. The entropy
generationSs is the strictly quadratic function of the proce
rate,u5dT/dt, only in the case when the work is not pro
duced, corresponding with the vanishing efficiencyh50 or
the equalityT1Ṫ5Te in Eq. ~15!. For the active heat trans
fer ~nonvanishingh! the entropy production appears to be
nonquadratic function of rates, represented by the integr
of Eq. ~15!.

IV. BASIC PROPERTIES OF EXTREMAL TRAJECTORIES

Applying the maximum operation for the fundamen
functional~14! at the fixed end temperatures and times, it
seen that the role of the first~potential! term is inessential,
and the problem of the maximum released work, max(W), is
equivalent with the associated problem of the minimum
tropy production. Similarly, performing the minimum oper
tion for the negative of this functional~the role of the first
term is inessential again! it is seen that the problem of th
minimum supplied work, min(2W), with the inverted ther-
modynamic end states, is also equivalent to its correspondin
problem of the minimal entropy production. This confirm
the crucial role of the entropy generation minimization in t
context of the extremum work problems, for each mode
the process. The consequence of this conclusion is th
problem of the extremal work and an associated fixed-
problem of the minimum entropy generation have the sa
solutions. Yet considerations involving the entropy produ
tion are unnecessary when the work functionals are give

For each process mode, the work extremization proble
can be broken down to variational calculus for the Lagra
ian

L5cS 12
Te

Ṫ1TD Ṫ. ~16!

The Euler-Lagrange equations for the problems of extre
work and the minimum entropy production lead to the sam
second order differential equation
re

x
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TT̈2Ṫ250, ~17!

which characterizes the optimal trajectories of all conside
processes. It has been proven@6# that the extremal rateṪ
satisfies the Legendre condition for the minimum work su
ply in case of the heat-pump mode and for the maxim
work delivery in the engine mode, and that each of these
situations is associated with the minimum entropy gene
tion. For a given duration and the prescribed end tempe
turesTi and Tf , the extremal functionT(t) which satisfies
Eqs.~17! is described by the equation

T~t,t f ,Ti ,Tf !5Ti~Tf /Ti !t/t f
. ~18!

One also obtains a momentumlike quantity, a formal ana
of the mechanical momentum

z[
]L

]Ṫ
5cS 12

TeT

~ Ṫ1T!2D , ~19!

and the first integral

E[
]L

]Ṫ
Ṫ2L5c

TeṪ2

~ Ṫ1T!2 , ~20!

which is a formal analog of the mechanical energy. For
quasistatic state changes, when the ratesdT/dt vanish,E
vanishes too, henceE is a dissipative quantity. An equatio
for the optimal temperature follows from the conditionE
5h

Ṫ5
6TAh/cTe

126Ah/cTe
[jT, ~21!

and the integration of this equation for the fixed-end bou
ary conditions leads to Eq.~18!. The coefficientj is a pro-
cess intensity constant, which can be determined from
boundary conditions of the fixed-end problem,

j5
ln Tf /Ti

t f2t i , ~22!

j is positive for the fluid heating process, and negative
the fluid cooling process. In what follows we shall assum
t i50, then the total duration will be represented by the tim
t f .

Equation~21! proves that, for the sameh, the heat-pump
heating processes run faster than the engine cooling
cesses~largerj and shorter durations in the engine case th
in the heat-pump case!. On the other hand, as shown by th
function E(j)5cTej2(11j)22 obtained from Eq.~20!, for
the two values ofj of the same magnitude but of opposi
signs and for the same durations, the valuesE5h are larger
for the engine mode than for the heat-pump mode of a p
cess with the same initial and final thermodynamic sta
This property is valid in spite of the fact that the engi
modes, which drive the process thermodynamic state fr
say,A to B, and the heat-pump modes, which drive the
verse process fromB to A, are described by the commo
work formula and share the same autonomous trajectory
the functionT(t).
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V. TOWARD CHARACTERISTIC FUNCTIONS
VIA DYNAMIC PROGRAMMING

The problem of generalized availability falls into the ca
egory of certain finite-time potentials, an evergreen probl
of contemporary thermodynamics@24#. The power of the dy-
namic programming~DP! method as applied to problems o
this sort lies in its important property: regardless local co
straints on controls or state variables theoptimal perfor-
mance functions satisfy an equation of Hamilton-Jaco
Bellman ~HJB equation! with the same state variables a
those for the unconstrained problem. Onlynumericalvalues
of optimizing control sets and those of the optimal perf
mance functions differ in constrained and unconstrain
cases. Although in the case of pure heat transfer prob
most components of the solution can be obtained ana
cally, even then there exist formulations in which the an
lytical solutions are not possible. These include free bou
ary conditions, non-Newtonian heat transfer and constra
imposed on the rate change of state, and the state itself~the
rate change of the temperature andT itself in our one-
dimensional case!. Otherwise, the state function property
dynamic programming potentials should prove to be v
suitable for more complex problems, such as those with m
transfer and chemical reactions. Therefore, any test of
HJB method in the context of the pure heat transfer prob
and associated exergy is highly desirable. This test sho
initiate a systematic search toward properties and impl
tions of HJB equations in thermodynamics. In particular,
test performed in this work shows that our problems may
correctly described by two kinds of HJB equations: a ba
ward HJB equation and a forward HJB equation. The form
is associated with the optimal work or exergy as an optim
integral function (I ) defined on the initial states~tempera-
tures!, and accordingly refers to the engine mode or p
cesses approaching the equilibrium. On the other hand,
forward HJB equation deals with the exergy~work! as the
function (2I ) defined on the final states, and according
refers to the heat-pump mode or processes leaving the e
librium ~see Sec. X!. FrequentlyI is called the optimal per-
formance function for the work integral.

Among the work extremization problems considered,
problem of the maximal work delivery~constrained or not! is
governed by the characteristic function

I ~t f ,Tf ,t i ,Ti ![maxWITi
•T f I

5maxH E
Ti

Tf F2cS 12
Te

T1uDuGdtJ . ~23!

In Eq. ~23!, u5Ṫ is the rate control variable defined by E
~8!. This equation refers to the engine mode or to proces
approaching equilibrium. For the heat-pump mode and p
cesses departing from equilibrium, one can define the o
mal function as

2I ~t f ,Tf ,t i ,Ti ![min~2WITi
•T f I !

5minH E
Ti

Tf

cS 12
Te

T1uDu dtJ .

~24!
-
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Indeed, since for an arbitrary quantityW for the same change
of the end states and times, the components of the vectT
5(T,t), within the same mode of the system the followin
holds:

maxW@Ti ,T f #52min~2W@Ti ,T f#; ~25!

the common extremal functionI (t f ,Tf ,t iTi) describes the
two modes, yet, in order to satisfy the second law of therm
dynamics, each mode is accomplished in different region
the spaceT. Clearly, the quantityI describes theextremal
value of the work integralW@Ti ,Tf #, Eq. ~10!. It character-
izes the extremal value of the work released for the p
scribed temperaturesTi andTf when the total process dura
tion is t f2t i . ~The invariance of the integral with respect
the variation of one of the end times when the total durat
is fixed is consistent with the existence of the energyl
integral for the problem.!

Here this problem is transformed into the equivalent pro
lem in which one seeks the maximum of the final work c
ordinatex0

f 5Wf for the system described by the followin
set of the differential equations:

dW

dt
52cS 12

Te

u1TDu[ f 0~T,u!, ~26!

dT

dt
5u[ f 1~T,u!, ~27!

dx2

dt
51[ f 2~T,u!, ~28!

The state of the above system is described by the enla
state vectorX which is composed of the three state coor
nates,X05W, X15T, andX25t. The designationf 0(T,u)
is used for the work production intensity in the integrand
the work integral. The last equation of the set states that
state coordinateX25t has been chosen as the independ
variable of the system. The single control variableu
5dT/dt ~the rate of the temperature change of the drivi
fluid in the nondimensional contact timet! is the process
control for the system in which the temperature changes
the space. Supposedly, more involved models describing
tensions of this problem may exist, with a vector of cont
variablesu, hence the symbolu rather thanu is used in our
general formulas below, whereu is the control vector of any
generalized process.

While the knowledge of the characteristic functionI only
is sufficient for a complete description of the extremal pro
erties of the problem, other functions of this sort are no
theless very suitable for the problem characterization.
now introduce the optimal performance functions, resp
tively, for the initial and final work coordinatesQ i andQ f .
One of these functions,Q i , works in the space of one dimen
sion larger thanI , and involves the work coordinatex05W

maxuW
f[Q i~Wi ,t i ,Ti ,t f ,Tf !5Wi1I ~t i ,Ti ,t f ,Tf !.

~29!
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This structure is the consequence of the fact that the s
variableW is not explicitly present in the rates of the sta
equations~26!–~28!. In this paper we do not consider mo
general cases.

In still enlarged space of variables (Wi ,t i ,Ti ,Wf ,t f ,Tf)
we also introduce the~nonextremal! wave-front functionV
defined as

V[Wf2Q i~Wi ,t i ,Ti ,t f ,Tf !5Wf2Wi2I ~t i ,Ti ,t f ,Tf !.

~30!

Its two mutually equal maxima, at the constantWi and at the
constant Wf , are described by the extremal functio
Vi(Wi ,t i ,Ti ,t f ,Tf)5Vf(t i ,Ti ,Wf ,t f ,Tf)[0, which vanish
identically along all optimal paths. They are associated,
spectively, with maximum of the free final coordinateWf in
the subspace of variables (Wi ,t i ,Ti ,t f ,Tf) and minimum of
free initial coordinateWi in the subspace (t i ,Ti ,Wf ,t f ,Tf).

Regardless the state variables are constrained or not
partial derivatives of the extremal performance functionQ i

with respect to its ‘‘working state’’@the initial enlarged state
(Wi ,t i ,Ti)# and those of the wave-front functionV5Wf

2Q i(Wi ,t i ,Ti ...) do coincide modulo to sign. One ca
therefore use the negative partial derivatives2]V/]Ti ,
2]V/]t i , and2]V/]Wi , instead of]Q i /]Ti , ]Q i /]t i , and
]Q i /]Wi in any equation of the backward DP algorithm~the
standard algorithm in which the initial set of the coordina
Wi , Ti , andt i forms the state variables!.

On the other hand, within the same mode, one can
formulate a dual problem of a minimal initial work coord
nateWi , when the final work coordinateWf is fixed. This
minimum is described by the extremal performance funct

minu Wi[Q f~Wf ,t f ,Tf ,t i ,Ti !5Wf2I ~t f ,Tf ,t i ,Ti !,
~31!

which is related to the wave-front functionV as follows

V5Q f~Wf ,t f ,Tf ,t i ,Ti !2Wi5Wf2Wi2I ~t, i ,Ti ,t, f ,Tf !

~32!

@compare Eq.~30! for V in terms of Q i#. Of course, the
following equalities hold along an extremal path:

maxWf2Wi2I ~t f ,Tf ,t i ,Ti !5Wf2minWi2I ~t f ,Tf ,t i ,Ti !

50, ~33!

They can be written in terms of the wave-front functionV as
follows:

maxV5max$Wf2Wi2I ~t f ,Tf ,t i ,Ti !%50, ~34!

The partial derivatives of the extremal performance funct
Q f with respect to its coordinates of the working state@the
final coordinates (Wf ,Tf ,t f) which are varied in the forward
DP equation# and those ofV5Q f2Wi do coincide. One may
therefore use the partial derivatives]V/]Tf , ]V/]t f , and
]V/]Wf instead of]Q f /]Tf , ]Q f /]t f , and]Q f /]Wf in any
equation of theforward DP algorithm~the algorithm where
the final coordinatesWf , Tf , andt f are the state variables!.
These properties are exploited below.

We search for a dynamic programming equation by
plying Bellman’s optimality principle@16,17# for a controlu,
te

-

the

s

o

n

n

-

in an admissible setU, which makes the final work coordi
nateX0(t f)[Wf a maximum or the initial work coordinate
X0(t i)[Wi , a minimum. We use the enlarged state vectoX
as the vector including the work coordinatex05W and the
coordinatesT and t, and the optimality principle in a rela
tively seldom form which links the original and dual optim
zation problem. This form states that theoptimal final value
of an optimized quantity is a function of the initial stat
whereas theoptimal initial value of the optimized quantity is
a function of the final state. Accordingly, the ‘‘original’
problem of the maximal final work coordinate is describ
by the functionQ i(Xi)[Q i(Wi ,t i ,Ti), Eq. ~29!, and the
‘‘dual’’ problem of the minimal initial work coordinate by
the function Q f(Xf)[Q f(Wi ,t i ,Ti), Eq. ~31!. In the first
function the complete set of the initial coordinates must
pear, in the second one the complete set of the final coo
nates must be used. Taking this into account, we will oc
sionally omit for brevity of formulas the remaining variable
in these functions, which can be regarded as parameters
apply the original and dual form of the optimality princip
respectively for the initial and final part of a path, to sho
that the conclusions obtained from DP equations can be
in terms of the single, common wave-front functio
V(Xi ,Xf) which treats the initial and final states in the e
larged spaceX on an equal footing. While the accepted i
dependent variable can be to large extent arbitrary~its mono-
tonicity property in time is the suitable limitation!, we will
assume the time coordinatet as the independent variable
We also assume that the ratedW/dt[dx0 /dt is known in
the form f 0(X,u)52L(X,u), whereL is the integrand in
Eq. ~12! with Ṫ5u. By passing to the usual residence timet
~in seconds! and taking into account the explicit presence
transfer coefficients inf 0 , one could admit the possibility o
‘‘aging’’ of the system. However, this extension is omitted
this paper. While below we derive the DP equations
Q i(Xi) or Q f(Xf) only, the related equation for the integr
work function I (Ti ,t i ,Tf ,t f) in the narrowed space of th
coordinates (T,t), which does not involve the coordinateW,
follows immediately from the conditionV50. Our main task
is now to derive the HJB equations as the basic quasilin
partial differential equations of the considered optimal co
trol problems.

VI. DYNAMIC PROGRAMMING APPROACH
TO HJB EQUATIONS

The problem can be treated mathematically as follow
Let us write our system of the three state equations@Eqs.
~26!, ~27! and ~28!# with the state variablesX05W, x15T
andx25t in a general form

dXb

dt
5fb~X,u! b50,1,2 ~35!

( f 2[1). Let us assume differentiability of the optimal pe
formance functionQ i(xi) and consider the controlu in in-
tervals ^t i ,t i1Dt& and ^t i1Dt,t f&, whereDt is a small
quantity. In order to take the variations of the initial state
Q i(xi) into account, we assume that the ‘‘long,’’ final se
ment of trajectory, fort in the interval^t i1Dt,t i ,t f&, is
optimal. The performance index of this segment equ



e

o
-

er

i-
a
-

h.

he

ith

it
s

is

e

-
b-

he

th,

ari-

cing
nt

t
on

5058 56STANISLAW SIENIUTYCZ
Q i(xi1Dx). Therefore the optimal final work for the whol
path in the interval̂ t i ,t f& is the maximum of the criterion

Wf[Q i~Xi1DX!5Q i~Wi1DW,Ti1DT,t i1Dt!.
~36!

The maximization is with respect to the control vectorui at
the constantXi , for the small initial~nonoptimal! part of the
path. It is performed at the constantX i subject to all con-
straints, i.e., including the differential transformations
state, Eqs.~26! and ~28!. Restricting to linear terms of ex
pansion ofQ i , Eq. ~36!, in Taylor series one finds

Wf5Q i~Xi !1
]Q i

]Xb
i DXb10~«2!

5Q i~Wi ,Ti ,t i !1
]Q i

]Wi DW1
]Q i

]Ti DT

1
]Q i

]t i Dt10~«2!. ~37!

In Eq. ~37! the symbol 0(«2) means second-order and high
terms. They possess the property lim@0(«2)/Dt#→0 when
Dt→0.

Similarly, one may consider variation of the final coord
nates of the state vectorX5Xf . One then assumes that
‘‘long’’ initial segment of a trajectory is optimal. The per
formance index of this optimal segment equalsQ f(Xf

2DX). In this case the controlu5uf should be properly
adjusted along a ‘‘short’’ nonoptimal final part of the pat
The optimal initial work coordinateWi , for the whole path in
the interval^t i ,t f&, is the minimum of the criterion

Wi5Q f~Xf2DX!5Q f~Wf2DW,Tf2DT,t f2Dt!.
~38!

Now the minimization is with respect to the controluf , at the
constantXf and subject to all constraints, i.e., including t
differential transformations Eqs.~26!–~28!. Restricting to
linear terms of expansion ofQ f , Eq. ~38!, in Taylor series
one obtains

Wi5Q f~Xf !2
]Q f

]Xb
i DXb10~«2!

5Q f~Wf ,Tf ,t f !2
]Q f

]Wf DW

2
]Q f

]Tf DT2
]Q f

]t f Dt10~«2!. ~39!

In Eqs. ~37! and ~39! the state changes are connected w
controlsu by the state equations~35!; hence for smallDt,

DXb5fb~X,u!Dt10~«2!. ~40!

After substituting Eq.~40! into Eqs.~37! and ~39!, and per-
forming the appropriate extremizations in accordance w
Bellman’s principle of optimality, one obtains, for variation
of the initial point,
f

h

maxui Wf5maxuiH U i~Xi !1
]U i

]Xb
i fb~X,u!Dt10~«2!J

~41!

and for the variations of the final point

minuf Wi5minuf H U f~Xf !2
]U f

]Xb
f fb~X,u!Dt10~«2!J .

~42!

Equations~41! and ~42! can then be simplified on the bas
of definition of the optimal performance functionsU i and
U f , Eqs. ~29! and ~31!, and using the property that thes
functions are independent of the controlu. After reduction of
U i and U f and the division of both sides of Eqs.~41! and
~42! by Dt, the passage to the limitDt→0 subject to the
condition lim@0(«2)/Dt#→0 yields, respectively, the back
ward and forward HJB equations of the optimal control pro
lem.

For the initial point of the extremal path, one finds, as t
backward DP equation,

maxuiH ]U i

]Xb
i fb~X,u!J 5maxui H ]U i

]Wi Ẇi~Ti ,ui !

1
]U i

]Ti Ṫi~Ti ,ui !1
]U i

]t i J
5maxuiS dU i

dt i D52minuiS dV

dt i D
5maxuiS dV

d~2t i ! D50. ~43!

On the other hand, for the final point of the extremal pa
one finds the forward DP equation

minuf H 2
]U f

]Xb
f fb~X,u!J 52maxuf H ]U f

]Wf Ẇf~Tf ,uf !

1
]U f

]Tf Ṫf~Tf ,uf !1
]U f

]t f J
5minufS 2

dU f

dt f D
5minufS 2

dV

dt f D
52maxufS dV

dt f D50. ~44!

The properties ofV5Wf2U i5U f2Wi have been used in
the second lines of the above equations. The ratesdXb /dt
should necessarily be considered in terms of the state v
ables and control~s!. One concludes thatthe optimal motion
of the wave always maximizes the speed of the advan
wave front dV/dt f or the speed of the retreating wave fro
dV/d(2t i).

The partial derivative ofV with respect to the independen
variablet can remain outside of the bracket of this equati
as well. Taking this into account as well as using in Eqs.~43!
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and ~44!, ]V/]Wi52]U i /]Wi521, ]V/]Wf5]U f /]Wf

51, andẆ5 f 052L, one finds for the extremal work prob
lem

]V

]t i 1minui H ]V

]Ti ui1Li~Ti ,ui !J 50 ~max Wf !, ~45!

]V

]t f 1maxuf H ]V

]Tf uf2L f~Tf ,uf !J 50 ~min Wi !.

~46!

In terms of the integral function of optimal work,I 5Wf

2Wi2V, these equations become, respectively,

]I

]t i 1maxui H ]I

]Ti ui1 f 0
i ~Ti ,ui !J 50, ~47!

]I

]t f 1minuf H ]I

]Tf uf2 f 0
f ~Tf ,uf !J 50. ~48!

In all equations of this sort the extremized expression
some Hamiltonians. In fact, they are Pontryagin’s type, n
extremal Hamiltonians. The optimal controlu which solves
the optimal work problem is chosen in order to extremiz
Hamiltonian at each point of the extremal path, which me
extremizing the wave-front velocitydV/dt in the considered
HJB equation. As long as the optimal controlu is found in
terms of the state, time, and gradient components of the
tremal performance functionI , the passage from the quas
linear HJB equation to the corresponding nonline
Hamilton-Jacobi equation is possible.

VII. PASSAGE TO HAMILTON-JACOBI EQUATION

The process Lagrangians are represented by the rate o
work production,f 0 , or the rate of the work consumption,L,
whereL52 f 0 . For these Lagrangians, the extremum co
dition of the Hamiltonian of the pertinent HJB equatio
~which is, in fact, the Pontryagin’s Hamiltonian! links the
derivatives ofL or 2 f 0 with respect to the process rateu
5Ṫ with the adjoint variablez52]V/]T5]I /]T. For con-
creteness we will work with Eq.~47!, in which the indexi is
omitted. The maximization of this equation with respect
the rateu leads to the two equations of which the first d
scribes the optimal controlu expressed through the variable
T andz[]I /]T,

]I

]T
52

] f 0~T,u!

]u
, ~49!

and the second is the original Eq.~47! without the extrem-
ization sign

]I

]t
1

]I

]T
u1 f 0~T,u!50. ~50!

With the momentum-type variable,z[]I /]T, and using Eq.
~49! written in the form

z52
] f 0~T,u!

]u
5

]L~T,u!

]u
, ~51!
e
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one can solve the above equation in terms ofu to obtain the
function u(z,T). Next one substitutes this function into th
two last terms on the left-hand side of Eq.~50!. @This is just
the maximal case of Eq.~47!.#. One obtains then the energy
type Hamiltonian of the extremal process,

H~T,t,z!5zu~z,T!1 f 0~z,T!. ~52!

With this Hamiltonian and usingz[]I /]T, one obtains from
Eq. ~50! the Hamilton-Jacobi equation for the integralI ,

]I

]t
1HS T,

]I

]TD50. ~53!

~In our example both functionsf 0 andH do not contain time
explicitly.! This equation differs from the HJB equations
it refers to extremal paths only, andH is theextremalHamil-
tonian. In Sec. VIII we apply the above formulas to o
concrete LagrangianL52 f 0 , where f 0 is the intensity of
the mechanical work production.

A brief heuristic approach to derivation of Eq.~53! for a
fixed but otherwise arbitrary mode along the lines of reas
ing first introduced to variational calculus by Caratheodory
insightful @25–27#. As follows from the definition of the
maximum performance functionI for the work functional
~23! in which the final state is subject to variations~while I
still includes a fixed initial state!

max$u~t!%H E
t i

t f

f 0~T,u!dt2I ~Ti ,t i ,Tf ,t f !J 50. ~54!

The path differentiation of this equation with respect to t
final timet f proves that the total time derivative ofI satisfies
the equation

maxuH f 0
f ~Tf ,uf !2

dI~Ti ,t i ,Tf ,t f !

dt f J 50, ~55!

whereas for the free initial state of the dual problem and
same mode of the process

minuH 2 f 0
i ~Ti ,ui !2

dI~Ti ,t i ,Tf ,t f !

dt i J 50. ~558!

Equation ~55! describes the vanishing maximum of th
power f 0 gauged by the total derivative of the optimal pe
formance function. Expanding in Eq.~55! the total time de-
rivative and changing signs~associated with change of th
extremum operation! yields

minuf H ]I

]t f 1
]I

]Tf uf2 f 0
f ~Tf ,uf !J 50. ~56!

In view of the equalities]I /]t f52]I /]t i and ]I /]Tf5
2]I /]Ti the above equation reads in terms of the initial st
quantities as follows:

minui H 2
]I

]t i2
]I

]Ti ui2 f 0
i ~Ti ,ui !J 50, ~568!
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which is identical to with Eq.~558! and equivalent with Eq.
~47!. The latter leads to the Hamilton-Jacobi equation~53!.

VIII. HAMILTON-JACOBI EQUATIONS FOR EXTREMAL
WORK AND GENERALIZED AVAILABILITY

Now the general procedure described in Sec. VII is
plied to the basic integral~10! written in the form

WITi
•T f I5E

Ti

Tf H 2cS 12
Te

T1uDuJ dt, ~57!

whose extremal value is the functionI (Ti ,t i ,Tf ,t f). The
momentumlike variable~equal to the temperature adjoint! is
then

z[2
] f 0

]u
5cS 12

TeT

~T1u!2D . ~58!

Hence the rate controlu in terms of T and its adjointz
5]I /]T,

u5S TeT

12z/cD 1/2

2T. ~59!

The energylike functionE(T,u) of the problem is the rate
representation of the extremal Hamiltonian,

E~T,u!52
] f 0

]u
u1 f 05

]L

]u
u2L5cTe

u2

~T1u!2 .

~60!

The extremal Hamiltonian itself isE expressed in terms o
the adjointz,

H~T,z!5cT21~12z/c!F S TeT

12z/cD 1/2

2TG2

, ~61!

from which the extremal Hamiltonian is described by t
simple formula

H~T,z!5cT21@ATeT2TA~12z/c!#2

5c@ATe2AT~12z/c!#2. ~62!

Accordingly, the Hamiltonian in terms of the derivativ
]I /]T is

H~T,]I /]T!5c@ATe2AT~12c21]I /]T!#2. ~63!

By changing signs at the adjoint variables one could obta
negatively-definedH which could reflect the energy dissipa
tion; however, we retain the Hamiltonian~63! positive. Such
a quantityH is still a well-defined property of the dissipativ
process.

The Hamilton-Jacobi partial differential equation for th
maximum work problem~the engine mode of the system!
deals with the initial coordinates, and has the form

]I /]t1c@ATe2AT~12c21]I /]T!#250. ~64!

Equation~64! is valid not only for the engine mode but als
for the heat-pump mode. Indeed, for the heat-pump m
-

a

e

one has to minimize the time integral over the Lagrang
L52 f 0(T,u), and that procedure leads to the extrem
function 2I (Ti ,t i ,Tf ,t f). The adjoint variables and th
Hamiltonian change their signs~l52z, wherel52]I /]T.
Consistently, the new Hamilton-Jacobi equation takes
form of the equation given above. See our complement
work @10,11# for related information about the canonic
equations and the role of the Legendre condition.

IX. HAMILTON-JACOBI APPROACH
TO MINIMUM ENTROPY GENERATION

Our analysis based on Eq.~14! has shown that the varia
tional fixed-end problem of the maximum workW is equiva-
lent to the variational fixed-end problem of the minimu
entropy production. Let us, however, compare the Hamilt
Jacobi equations of these two problems. The specific entr
production is described by the functional@11#

Ss5E
0

t f

Lsdt[E
0

t f

c
u2

T~T1u!
dt. ~65!

Assume that the minimum of this functional is described
the optimal function I s(Ti ,t i ,Tf ,t f). We shall find the
Hamilton-Jacobi equation for this function. For an extrem
path the partial derivative]I s /]T satisfies the maximum
condition for the corresponding Pontryagin’s Hamiltonia
This condition yields

zs[
]I s

]T
5

]Ls

]u
, ~66!

where]Ls /]u is the adjoint variable of the entropy gener
tion problem, or the momentum-type variable]Ls /]T. In
our case

]Ls

]u
5

c

T F12
T2

~u1T!2G , ~67!

from which

T

u1T
5A12Tzs /c. ~68!

It follows from the Legendre necessary condition for a mi
mum of the functional~65! that the sumT1u must always
be positive, the condition which limits considerably the va
ues ofzs wheneveru is negative as in the case of the engi
cooling. From Eq.~67! the positive values]Ls /]u5zs cor-
respond to the heating of fluid~heat-pump mode whenT
.Te! and the negative values ofzs correspond to the cooling
of fluid ~engine mode whenT.Te!. From Eq.~68!, one finds
the rate controlu5dT/dt in terms of the temperatureT and
its adjointzs5]I s /]T,

u5TS 1

A12Tzs /c
21D . ~69!

This equation is valid for every mode of the system. T
energylike integral for the entropy production functional, E
~65!, is
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Es5
]Ls

]u
u2Ls5c

u2

~T1u!2 . ~70!

Moreover, from Eqs.~60! and ~70! the following equation
holds:

E5TeEs . ~71!

The equation means that the equalityE5Es8 is valid, where
Es8[TeEs , and the equationsE(u)5h andEs8 (u)5h have
the same solutions with respect to the rateu5dT/dt. This
is, of course, the formal consequence of the physical equ
lence between the problem of the minimum entropy gene
tion and the problem of the extremum work. This equiv
lence can be stated in the form of equality~71! for each
mode of the system.

The entropy production HamiltonianHs is the represen-
tation of Es in terms ofT andzs,

Hs5c
u2

~T1u!2 5cS T

A12Tzs /c
2TD 2S T

A12Tzs /c
D 22

,

~72!

from which

Hs5c~12A12Tzs /c!2. ~73!

Clearly, from Eqs.~66!, ~67!, and~70!, the case of vanishing
zs and u implies Hs50 identically. This case refers to th
reversible quasistatic processes.

The Hamilton-Jacobi partial differential equation for th
minimum entropy generation problem~each mode of the sys
tem! is

]I s /]t1c~12A12c21T]I s /]T!250. ~74!

This equation can be compared with Eq.~64!, which de-
scribes the extremal work problem in terms of the wo
HamiltonianH, Eq. ~63!. In spite of the equalityE5Es8 the
partial derivatives of both extremal functions with respect
T, ]I /]T and I s8 /]T, differ. Since, however, the two func
tionals ~that of the work and that of the entropy generatio!
yield the same extremal, the connection between th
should exist. This connection is determined in Sec. X.

X. AN ANALOGY WITH A PARTICLE IN A VECTOR
FIELD AND GAUGING THE ENERGY DISSIPATION

An interesting formal analogy can be observed betw
the thermodynamic system considered and a microsc
system which contains a particle in a vector field, say,
external electromagnetic field. In the latter case, the addi
of the vector potential termA–v to the particle Lagrangian
does not change the value of the energy of the particle in
electromagnetic field. Since, hovever, the termA–v changes
the canonical momenta, the Hamilton-Jacobi equation of
particle contains the vector potentialA, and thus it differs
from the corresponding equation of the particle when
field is removed.

In the thermodynamic case considered, the role of theA–v
term is played by the product2c(12Te/T)Ṫ, which ap-
pears in the first line of Eq.~14!, as the term representing th
a-
a-
-

m

n
ic
n
n

e

e

e

‘‘reversible’’ thermodynamic power. From the formal view
point the thermodynamic case is more special than the e
tromagnetic case, not only because the former is one dim
sional but also because a thermodynamic counterpart of
the electric potentialf does vanish and the classical therm
dynamic work acquires the potential~path-independent!
property. Leaving aside these differences, however, the
mal consequence of the linearity of the reversible te
2c(12Te/T)Ṫ with respect toṪ is that this term does no
influence the dissipative energiesE and Es , Eqs. ~60! and
~70!; hence the equalityE5Es8 described by Eq.~71! is
valid. Yet the considered term of Eq.~14! influences the
definition of the canonical momenta, and this is why
causes the different forms of the Hamilton-Jacobi equati
for the work and entropy generation, Eqs.~64! and ~74!.
Moreover, the potential nature of the classical work integ
Eq. ~13!, causes the identity of the extremal trajectories
the work extremization problem and those for the entro
generation minimization problem. The potentiality of th
classical work integral~13! is the property which renders th
analogy considered trivial, since the thermal counterparts
the electric and magnetic fieldsE andH vanish identically in
the thermodynamic problem.

The canonical transformation theory can be applied in t
case which leads to the conclusion that the lost powerLs8
[TeLs can be gauged by addition of the total time deriv
tive dV/dt of a gauging functionV(T). Taking into ac-
count the change in the type of the extremum operation
order to preserve unchanged equation of the extremal cu
the following general equation must link the momentum-ty
variables:

] f 0

]u
5

]V

]T
2

]Ls

]u
. ~75!

When the above equation is applied to our thermodyna
problem, the result is

2cF12
TeT

~ Ṫ1T!2G5
dV~T!

dT
2

cTe

T
F12

T2

~ Ṫ1T!2G .

~76!

This relationship links the Lagrangians of the entropy ge
eration and work. The equalityEs85E proves that we are
dealing with an autonomous gauging functionV, hence the
time independent derivativedV/dT in Eq. ~76!. The above
equation yields

dV~T!

dT
52cS 12

Te

T D , ~77!

from which after integration betweenTi andTf ,

V~T!5c~Ti2Tf !2cTe lnS Ti

Tf D52DB~T!, ~78!

which is just the classical work or thechangeof the classical
thermal availability, Eq.~13!. Therefore the change of th
classical available energy is just the Hamiltonian-preserv
gauging function for the functional based on the entropy g
eration intensity,Ls8[TeLs . Equalities~71! and~76! may be
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viewed as equations linking the two functionals, the entro
generation functional and the generalized availability fu
tional, along an extremal. Extraction of the potential wo
DB from the total work of the process is that form of gau
ing which preserves the same extremal trajectories and
sipative Hamiltonians of the two fixed-end problems cons
ered. This conclusion is also illustrated by the relati
between the two available energy functions, generalized
classical, as described by Eq.~84!.

XI. PRINCIPAL POTENTIAL FUNCTIONS
FOR EXTREMUM WORK

AND GENERALIZED AVAILABLE ENERGY

One can now discuss the solutions of the Hamilton-Jac
equations for the considered problems. From Eq.~23!, by
integration along an extremal path, one finds the funct
which describes the optimal specific work,

I ~Ti ,Tf ,t i ,t f !5c~Ti2Tf !2
Te

11j
c ln

Ti

Tf . ~79!

This is the expression which generalizeschangesof the
available energy to processes with a finite ratedT/dt5jT.
In a finite-rate process this work depends explicitly on
process duration.

From the above equation and after using the end co
tions to evaluate the intensityj in terms of the boundary
temperatures and times,

j5
ln~Tf /Ti !

t f2t i 52
ln~Ti /Tf !

t f2t i ~each mode!, ~228!

the extremal specific work between two arbitrary states
lows for every process mode in the form

I ~Ti ,Tf ,t i ,t f !5c~Ti2Tf !2cTe ln
Ti

Tf

1cS Te2
Te

11j D ln
Ti

Tf

5c~Ti2Tf !2cTe ln
Ti

Tf

1cTeS j

11j D ln
Ti

Tf

5c~Ti2Tf !2cTe ln
Ti

Tf

2cTe
@ ln~Ti /Tf !#2

t f2t i2 ln~Ti /Tf !
. ~80!

The particular extremal work which describes the gene
ized availability should contain the environment temperat
as one of the boundary states. The generalized availab
function is the maximal workWmax5I(Ti,ti,Tf,tf) with Ti

5T andTf5Te for the engine mode, and the negative min
mal work (2W)min52I(Ti,ti,Tf,tf) with Ti5Te and Tf5T
y
-

is-
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nd
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n
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l-
e
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for the heat-pump mode of the system. Forj50 the change
of the classical thermal availability, a positive quantity,
recovered.

From Eq. ~80!, with Ti5T and Tf5Te, one finds the
dissipative exergy of the engine mode

Ex~T,Te,t i ,t f !5c~T2Te!2cTe ln
T

Te

2cTe
@ ln~T/Te!#2

t f2t i2 ln~T/Te!
. ~81!

Ex is the generalized~irreversible! exergy of mass unit which
includes the effect of dissipation caused by finite rates in
boundary layers of the real fluids. It may be verified that t
function satisfies the backward Hamilton-Jacobi equati
which is Eq.~64! with respect to the initial state and forI
5Ex . Otherwise, one obtains the exergy of the heat-pu
mode for the function2I (Ti ,t i ,Tf ,t f) with Ti5Te and Tf

5T

Ex~T,Te,t i ,t f !5c~T2Te!2cTe ln
T

Te

1cTe
@ ln~T/Te!#2

t f2t i1 ln~T/Te!
. ~82!

This function satisfies the forward Hamilton-Jacobi equat
or Eq. ~64! with respect to the final state and forI 52Ex .
Taking into account that the last term of the above equa
contains the minimal integral of the entropy production,

Ss~T,Te,t i ,t f !5c
@ ln~T/Te!#2

t f2t i6 ln~T/Te!
, ~83!

the general formula for the dissipative exergy is

Ex~T,Te,t f !5c~T2Te!2cTe ln
T

Te

6cTe
~t f !21@ ln~T/Te!#2

116~t f !21 ln~T/Te!

5Ex~T,Te,`!6TeSs , ~84!

whereEx(T,Te,`) is the classical available energy of ma
unit, B, and we have assumed without any losses in gen
ality that t i50. In the above equations the upper sign ref
to the heat-pump mode, and the lower sign to the eng
mode.

An alternative form of the generalized available ener
contains theheight of the transfer unit HTU5L/t and the
contact lengthL

Ex~Tf ,Te,t!5Ex~Tf ,Te,`!6cTe
HTU@ ln~Tf /Te!#2

L6HTU ln~Tf /Te!
.

~85!

This form shows that the classical availability yields an ex
estimation of the extremal work for smallHTU , i.e., for the
excellent transfer conditions, or for infinitely long conta
times of the energy exchange. The generalized availabilit
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the engine mode, the exergy functionEx5(W)max, which
defines the upper bound for the mechanical work release
a finite time, is necessarily smaller that the maximal work
classical thermodynamics. Otherwise the generalized av
ability of the heat-pump mode,Ex5(2W)min , which defines
the lower bound on the work consumption, can be sign
cantly higher than the minimal work of classical thermod
namics. For state changes occurring in short times, this w
may differ from the classical work substantially. These ‘‘ra
penalty’’ effects are a consequence of nonvanishing entr
generation in all finite-time processes.

XII. ENHANCED BOUNDS
FOLLOWING FROM SECOND LAW

The general thermodynamic result in the second line
Eq. ~84! is in the complete agreement with the classi
Gouy-Stodola law@13,14#. This law is, in fact, a formulation
of the second law of thermodynamics, which links losses
the extremal work, finiteness of the process rates, and
related entropy generation,Ss . However, the classical for
mulations of the second law~contained in the adduce
works, for example!, provide neither analytical expression
for the nonclassical component of the availability~and the
related quantitySs! nor information about the time evolutio
of the system. For these purposes a dynamical model of
evolution and the solution of the related Hamilton-Jac
equation@such as Eq.~64!# are necessary. Therefore the HJ
theory becomes an important ingredient of nonequilibri
thermodynamics in which certain post-thermostatic~rate
penalty! terms are sought for generalized thermodynamic
tentials, i.e., when classical thermodynamic potentials
generalized to finite-time durations.

The irreversible or hysteretic properties of the generali
exergy as a finite-time work function are important. They a
associated with different values of the work function o
tained when processes which leave the equilibrium are c
l.
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pared with corresponding inverse processes, which
proaches the equilibrium. The first sort of process
corresponds with the heat-pump mode, associated with
supply of the work to the system, the second sort
processes—with the engine mode, characterized by the
livery of the work from the system. Speaking in more ge
eral terms, processes departing from equilibrium may be
garded as those in which the creation of a~nonequilibrium!
structure takes place. Otherwise the processes approac
the equilibrium may be regarded as those of the destruc
of the structure.

While in the classical reversible thermodynamics the t
modes can be accomplished with exactly the same ma
tude of work, in the generalized theory, which includes t
effect of dissipation, the works consumed and produced
the two modes operating between the two fixed states ar
longer equal. A significant decrease of the maximal wo
received from the engine system and an increase of the m
mal work added to the heat-pump system is shown in
high-rate regimes and for short durations of thermodyna
processes. These results show that limits known from
classical availability theory should be replaced by stron
limits obtained for finite-time processes, which are closer
reality. These limits are such that the structure creation p
cesses consume in a finite time more mechanical energy
the mechanical energy which could be recovered in co
sponding processes of the structure destruction. This is
other manifestation of the asymmetry inherent in the mac
scopic world, which is explained by the second law
thermodynamics.
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