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We analyze a steady-state problem of maximum work delivered from a finite resource fluid and a bath, as the
dissipative, finite-time generalization of the evolutionary Carnot problem in which the temperature driving
force between two interacting subsystems varies with the contact time. The thermal capacity of the bath is very
large, so its intensive parameters do not change. At the classical, reversible limit, the instantaneous rates do
vanish due to the reversibility requirement, whereas in the generalized problem some inherent, rate-related
irreversibilities are inevitable, in particular those occurring in boundary layers at interfaces. Methods of the
optimal control and variational calculus are suitable to optimize nonlinear dynamics of the process. An ana-
lytical formalism, strongly analogous to those in analytical mechanics and optimal control theory, is effective
in thermodynamic optimization. A variational theory treats an infinite sequence of infinitesimal Curzon-
Ahlborn-Novikov processes as the theoretical model pertinent to develop the theory of a finite-resource fluid
interacting with a bath in a finite time, when the active exchange of the energy occurs through the working
fluid of participating engines, refrigerators, or heat pumps. The main application is the extension of the
classical availability(exergy beyond the class of reversible processes. The generalized exergy is next dis-
cussed in terms of the finite intensity and finite duration of the process. Optimality of a definite irreversible
process is an essential feature for a finite duration. A link is shown between the process duration and the
optimal intensity measured in terms of a dissipative Hamiltonian. An interesting approach, based on the
Hamilton-Jacobi-Bellman equation for the irreversible availability and underlying work functigh&lB
theory), is developed. The HJIB formulation is suitable for generation of numerical data of the work potentials,
by the standard recurrence equation of Bellman’s dynamic programming. Such an equation is, in fact, the sole
solving algorithm for functionals with constrained rates and states and with complex boundary conditions. It
will certainly be inevitable in the case of the problem generalization to mass transfer and chemical reactions.
An essential decrease of the maximal work received from an engine system and an increase of minimal work
added to a heat-pump system is shown in the high-rate regimes and for short durations of thermodynamic
processes. The results prove that the limits known from the theory of the classical availability should be
replaced by stronger limits obtained for finite-time processes, which are closer to reality. Hysteretic properties
are effective which cause the difference between the work supplied and delivered, for the inverted end states
of the process. The significance of these results for the theory of the structure creation and destruction is
underlined[S1063-651X97)12910-5

PACS numbegs): 05.70—a

I. INTRODUCTION tool to define a rate- and duration-dependent function of
available energy(exergy which generalizes the classical
Considerable progress has recently been achieved in uthermal exergy for finite-time processes with dissipation oc-
derstanding the thermodynamics of finite-rate and finite-timecurring in associated resistances. Some works on the finite-
systems, including the theory of the Curzon-Ahlborn-time exergy published to da{&-9] suffered from the ab-
Novikov engine or CAN engingl,2]. This progress makes it sence of associated time evolution and particular functional
possible to accomplish the basic task of this paper: a finitdormulations which could compris@n a single expression
time extension of the theory of a resource interacting with ahe potential property of the classical reversible component
bath, as the irreversible extension of the corresponding reand the path-dependent property of the irreversible compo-
versible probleni3]. A good review of various single-stage nent, in addition, these works did not make a distinction
CAN systems was presented by de V45 However, for the  between the finite-time availability of processes approaching
purpose of the extension mentioned above, in which the therand leaving equilibrium. This property was first emphasized
mal parameters of théinite) resource change in time, one only recently[10,11]. The property disappears in the revers-
needs to deal with sequential CAN processes. In particulaible case of quasistatic processes, when the effect of resis-
dynamical models of infinite sequence of infinitesimal CAN tances does vanish, and the extended available energy sim-
processes arranged sequentially in order to accomplish thglifies to the classical exergy, inherently associated with
active(work producing exchange of heat between two fluids infinite durations.
(in particular fluid and bathwere worked ouf5,6]. It was The standard thermodynamic reasoning which leads to the
underlined therein that the sequence is the basic theoreticalassical exergy is based on the theory of a macroscopic
body immersed in a bath, as known from various bddis-
14]. This classical exergy can also be obtained as the limiting
*Electronic address: Sieniutycz@ichip.pw.edu.pl work received from the sequence of a finite number of Car-
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not cycles, at the limit when the number of these cycles tends

to infinity [3]. For the purpose of the classical exergy, which ¢ dQ; Ty i::}z driving fluid _G>
is the reversible quantity, the commencement of the theoret- a2 oy

ical scheme with a finite-stage modél| is unnecessary; the — ’ -

traditional model of infinitesimal stages is sufficient. Indeed, Commiot engines power
the presence afeversiblecycles, such as those used in Ref. C

[3], fixes automatically the first-law efficiency of each infini- L‘ Jl

tesimal stage at the well-knowriCarno} level, =1 :Tz' Tt av.

—T®T, whereT is the instantaneous temperature of a finite =

resource and© is the temperature of the environment or an o, T, environment

infinite bath. Since the unit mass of the resource releases the . Tedr

heatdg= —cdT, wherec is the specific heat, the classical L=T y+dy

thermal exergyE, follows by integration of the product 0 x+dx ;

—cnpdT=—c(1-T%T)dT between the limitsT and T¢.
The integration yields the well-known classical expression, F|G. 1. Model of power production and dissipative availability
Eg. (13) of the present paper, in a quite trivial way. HOw- of flowing fluid accomplished in an infinite sequence of infinitesi-
ever, the problem becomes nontrivial in the case when @al Curzon-Ahlborn-Novikov engines.
finite-rate process is considered, since the efficiency differs
in this case from the Carnot efficiency. That efficiencyB to A for the same, finite, duration of the process.
should be determined before the integration of the product |n the present work we first briefly recapitulate some ba-
—cndT can be made. The integration then leads to a genesic issues associated with derivation of basic work function-
alized available energy associated with the extremal releasgls, and then direct our analysis toward an aspect which is
of the mechanical work in a finite time. Such generalizedthe derivation of the Hamilton-Jacobi-Bellman the¢HJdB
availability is the main task of this paper. theory) for functionals of dissipative exergy and work. The
We shall distinguish two classes of actitweork exchang-  HJB theory is known as a basic ingredient of variational
ing) nonequilibrium systems. When the system is approachealculus and optimal contr¢ll6—-20. The HIB formulation
ing equilibrium the work is released, and the system playss important to find data of the generalized available energy
the role of an engine. This case is called the engine mode @ind/or related work potentials by numerical methods. These
the system. The delivered wolW is then positive by as- methods, along with the associated Pontryagin’s maximum
sumption. Otherwise, when the system is departing from therinciple [21], are the main effective extremum seeking
equilibrium the work must be supplied, and the system playsnethods for functionals in cases of constrained rates and
the role of a heat pump. This is the so-called heat-pumptates[22]. They will certainly be inevitable in the case of
mode of the system. The woW is then negative, which the problem generalization to include the mass transfer in
means that the positive workW) must be supplied to the separation units and chemical reactions. However, Pontria-
system. To obtain the generalized exergy, optimization probgin’s maximum principle, in itself, does not generate an op-
lems are considered in this paper, which involve the maxitimal performance functioriprincipal function) which is in
mum of the work delivered (maw) and the minimum of the our case the generalized work potential or the dissipative
work supplied[min(—W)]. The boundary states of the sys- exergy, the main result which is sought. Otherwise, when the
tem at the engine mode are inverted boundary states of théJB equation is known, the exergr work) function is
system at the heat-pump mode. explicit therein, and a discretization approach can transform
The classical thermal availability is the non-negativethe problem into Bellman’s functional equation which can be
quantity. It is reversible in the sense that the magnitude o&olved by standard solving techniques of discrete dynamic
the work delivered during the reversible approaching of theprogramming23]. This is not in contradiction with the fact
system to equilibrium is equal to the magnitude of the workthat we restrict ourselves here to systems which are continu-
supplied, after the initial and final states are interchangedous from the physical viewpoint. Systems which are discrete
The first case corresponds with the engine mode of the sysy nature will be considered in a separate publication.
tem, the second with the heat-pump mode the system. The

classical exergy is the quantity which defines bounds on || biEEERENTIAL MODEL AND IRREVERSIBLE

work delivered from(or su.ppl|.ed to very slow, rever_5|blg GENERALIZATION OF CARNOT FORMULA
processes. Our research is directed toward generalization of

this classical idea for the finite-rate transitions. We show that It is important to realize that no analysis of a single CAN
while the reversibility property is no longer valid for the unit is sufficient for the purpose of generalization of the
generalizednonclassical exergy, the thermokinetic bounds available energy to finite durations; rather a treatment of a
formed by this generalized exergy are stronger and henceomplex system composed of infinite number of infinitesimal
more useful than classical thermostatic bounds. This substa®&AN units is necessary. The corresponding abstract scheme,
tiates the role of the generalized exergy for evaluation of thevhich is shown in Fig. 1, depicts an infinite sequence of the
energy limits in practical systenfd5]. It is quite essential infinitesimal CAN processes. As its classical, reversible pro-
that these limits depend on the direction of the finite-timetotype, it is still a highly abstract, work-producing system in
process, i.e., the limit corresponding with the change of thavhich active heat exchange occurs between the two real flu-
thermodynamic state fror to B is not the same as the limit ids of finite thermal conductivities and containing their own
associated with the change of the thermodynamic state frotaoundary layers as dissipative components of the system.
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The mass flux of the first fluidsubscript 1 G is finite; Let us first note that the local efficiency of an infinitesimal

otherwise the amount or mass flux of the second flgith-  unit of the process iy=dW/dQ;. While this local first-law

script 2, which plays the role of a bath or an environment, isefficiency is still described by the Carnot formula

infinite, which results in the constant temperature of the sec-

ond fluid, T,=T€. The differential Carnot engines are lo- T,

cated continuously between two separated boundary layers T,

of the fluids, so that they work between their interfaces. This

abstract model of the active energy exchange, associatehis efficiency is nonetheless lower than the efficiency of the

with the power production, is a finite-rate, irreversible gen-unit working between the boundary temperatufgsand T,

eralization of the corresponding classical model of the avail=T¢, as the former applies to the intermediate temperatures

able energy released from two fluids. In both cagesers- T,, and T, . The intermediate temperatures are unknown,

ible and not the second fluid plays the role of the bafl?].  but they can be expressed in terms of the boundary tempera-
Let us derive a mathematical model of infinitesimal CAN tures T, and T, and the efficiencys. By solving Eqg. (1)

process at the steady st@6d. In the steady process the con- along with the reversible entropy balance of the Carnot dif-

servation balances refer to the fluxes rather than to stockserential subsystem

The finite-mass fluG of the first fluid, whose constant spe-

cific heat capacity equals, is in the direction parallel ta dyi(T1—Ty) dy(To—Ty)

axis. Between the working fluid of the Carnot engine and Ty - T, ' @

each of two fluidgeach of a finite thermal conductivijtyhe

differential conductancedy, and dy, are present, as the one obtains the primed temperatures as certain functions of

system dissipative elements. the variablesT,, T,=T®, and». Such an approach may be
Changes of various physical quantities are measured gggarded as the differential version of the finite-stage ap-

functions of the horizontal length coordinatebetween its  proach which was developed earlier and applied to the

initial valuex=0 and any current value. The(partia) con-  single-stage and multistage systefdsl0]. The associated

ductancesy; and vy, link the heat sources with the working driving heat fluxdQ,=dvy,(T,—T,,) is then found in the

fluid of the engine at high and low temperatures, and theiform

differentials can be expressed d%,=«a,dA; and dvy,

=a,dA,, wherea; anda, are the heat transfer coefficients

and dA; and dA, are upper and lower exchange surface dQl:d?’[Tl_mB

areas. The areafs; andA, are components of the composite

area A whose differentialdA satisfies the equalitydA  from which the efficiency-power characteristic follows in the

=dA;+dA,. The heat power§; andQ, are the cumula- form

tive heat fluxes flowing respectively from the upper reservoir

and to the lower reservoir. For the differential length (the T,

differential composite aredA) the fluid delivers the driving n=1- T,—dQ,/dy )

heat powerdQ; to the working medium of the infinitesimal

Carnot engine. The temperature of the driving fl(fidid 1) In Egs. (3) and (4) y is an appropriately definedverall

decreases slightly along its path since this fluid releases theonductance of the traditional heat transfer thel@ly The

heat to run the engine. In the rangg>T® the differential symbol Q,(y) refers to the function describing the driving

dT, is negative for the engine and positive for the heatheat flux along the conductance coordinat@he associated

pump. The differential of the driving heat fluxlQ,, de- differential conductancdy may be expressed as the product

scribes the heat power subtracted from the flowing drivinga’dA, which further leads to the expression

fluid when its temperature decreases fromto T,+dT;.

@

: ()

(Later the symbolT; will be simplified toT and the driving dy=a'dA=ca'a,F dx=«a'a,Fuv dt. (5)
fluid temperature will be identified as the single state vari-
ableT of the proces$. Herea' is an overall heat transfer coefficient referred to the

We designate byl;, and T, the upper and lower tem- total differential areadA, a, is the total specific exchange
peratures of the working agent which circulates in each difarea per unit volume of the system, aRdis the system
ferential Carnot engine. The high-grade he@, reaches the cross-sectional area for the driving fluid, perpendiculax.to
engine part aff;,. In the simplest case of the Newtonian The symbolv refers to the linear velocity of the driving
heat exchange which we consider here, this heat is propofluid, andt is the contact time of this fluid with the heat
tional to the temperature differendg— T,, . Otherwise, the exchange surface.
low-temperature part of the Carnot subsystem releases the Now one can introduce the spatial scale of the process or
pure heat to an environmertor fluid 2) through another the quantity
conductancedy,. The flux of the released heat is propor-
tional to the differencél,,—T,. This low-grade heat flows Gc
between the low-temperature part of the endiiel,/) and a'a,F
the environmental fluid, and reaches this fluid at the low
temperaturel,=T®. We are dealing with the case when the which has the length dimension and is known from the heat
temperature of the bath fluid is constant and equal to that afansfer theory as the so-called height of the heat transfer unit
an environmentinfinite bath of the second fluid,,=T¢). (Hty). In Eq. (6) it is referred to the driving fluidfluid 1).

=Hqy, (6)
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A nondimensional lengtk/Hy=vt/Hy can next be de-  fluid flow, W/G, is obtained by integration of the product of
fined, which is known as the number of transfer units. Since; and dQ/G= —cdT between an arbitrary initial tempera-
it measures the extent of the system and it is proportional teure T' and an arbitrary final temperatufé of the fluid. (In
the contact time of the fluid with the energy exchange area, || designations that follows, the superscriptandi refer to
plays also the role of a nondimensional time, and this is whythe final and initial states, respectivelyThis integration

it is designated by, yields the specific work of thBowingfluid in the form of the
functional
X _a'aF_  a'aFv ) ;
“Hno G, Gc @

Tdr. (10

Tf ( T®

WIT-TfIEW/G:_f. cl1— g
In what follows the subscript 1 designating the first fluid T T+T
(driving fluid) is no longer needed, and it will be omitted for ,
simplicity of equations. From the energy balance of the driv-The notation[T',T] means the passage of the vector
ing fluid, the heat power variableQ, satisfies dQ  =(T,7) from its initial stateT' to its final stateT'. For the
=—Gc dT, wheredT is the differential temperature drop of above functional, the work maximization problem can be
the first (driving) fluid, andc is its specific heat. With the stated for the engine mode of the process
above definitions and the differential heat balance of the

driving fluid, the control termdQ,/dy of Eq. (4), may be A .
written in the form (W) max=max _ji L(T,T)dr
dQ/dy=—u=—Gc dTa'dA=—Gc dTa’a,F dx g e\
— —GcdTa'a,Fo dt=—dT/dr ®) :max| - f c| 1~ 'T+T)T dt]' 1D

(subscript 1 omitted The negative of the derivativeéQ/dy
is the control variableu of the process. In short, the above
equation says that=T, or that the control variable equals
the rate of the temperature change with respect totmeli- ¢ _
mensionakime 7. The controlu has the temperature dimen- (—W) min= mindT/drf? L(T,T)dr
sion.

With the help of Eqs(5)—(8), the efficiency formuld4) . o
becomes the simple, finite-rate generalization of the Carnot = mMming7/q ff c( 1— _T Tdr (12)
formula 7 +T

whereas for the heat-pump moden inverse procegsone
states the minimization problem

T

T

T® For each process mode, a dissipative exergy of the finite-
T+T' ©  time process is obtained as the extremal of the related func-
tional with the appropriate integration limit3'=T and Tf
When T>T¢ the derivativeT is negative for the engine :fTe for the engine mode of the process, ahid=T* and
T'=T for the heat-pump mode of the procgss

mode. This is because the driving fluid must release the en :
. . oo The above Lagrange functionals represent the total power
ergy to the engine to assure the work production. Simif@rly . . oo )
. o, : per unit mass flux of the fluid which is the quantity of the
is positive for the heat-pump mode. In the engine case . . . - '
specific work dimension, hence their direct relation to the

< ¢, whereas in the heat-pump mo . WhenT o . S
<T7?é:the efficienciegas the fir.ft—lavs effic(itﬁc?gs ddecome specific exergy of the fluid at flow. In the quasistatic limit of
vanishing ratesd T/d7=0, the above work functionals rep-

negative, nonetheless each case the efficiency of a finite- resent the chanae of thassical exer
time process deviates adversely from the Carnot efficiency 9 9y
The simplicity of Eq.(9) is its great advantage when analyti-

e
cal studies are in question. With the help of £8) work Wiarrrmo = — fT_fc(l_ T—)dT=Ah—TeAs. (13)
functionals can easily be formulated, as shown in Sec. Ill. T T

n=1-

IIl. WORK FUNCTIONALS FOR INFINITE SEQUENCE This functional leads to itrle classm:?ll_ex‘frgy for appropriate
OF INFINITESIMAL CAN PROCESSES boundary temperature§,'=T and T'=T®. Consequently,

AND LINK WITH ENTROPY GENERATION Eq. (10) represents the dissipative exergy change for the
finite-time processes in which irreducible dissipative phe-

It is suitable to work with the vectof =(T,r) composed nomena occurring in the boundary layers are essential. For
of the temperature and the number of heat transfer units ithe engine mode of the process, the dissipative exergy itself
order to describe finite-time thermal processes in which thés obtained as thenaximumof functional (10), with the in-
temperatureT is the state variable andis the nondimen- tegration limits T'=T and T'=T¢, for the heat-pump
sional time or the number of the heat transfer units. We alsonodel—as the minimum of the negative of this functional,
designate byw the cumulative power inpuputpub for the  with the integration limitsT'=T¢ and T =T.
system at timer (the length coordinate between 0 axd For An alternative form of the specific work, E(L0), can be
any process mode, the cumulative power delivered per unitritten as the functional
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T LNE TT-T2=0, 1
W|Tinf|EW/G=fi —C(l—?)T dr an
T . which characterizes the optimal trajectories of all considered
o™ T? processes. It has been provig] that the extremal rat&
- f e dr satisfies the Legendre condition for the minimum work sup-
T T(T+T) . i
ply in case of the heat-pump mode and for the maximum
Tf T® work delivery in the engine mode, and that each of these two
:_f Y 1- T daT situations is associated with the minimum entropy genera-
T . . . .
tion. For a given duration and the prescribed end tempera-
=TSy 1i 711 (14)  turesT' andT', the extremal functiom(7) which satisfies

Eqgs.(17) is described by the equation
in which the first term is the classical “reversible” term and

the second term is the product of the equilibrium temperature T(r A T, TH=TI(THTH 7" (18)
and the entropy production,
One also obtains a momentumlike quantity, a formal analog

f T2 of the mechanical momentum
Sa’lTi,Tflzj- c———dr. (15)
T T(T+T) oL T°T
_ z=—=c|1- 5 (19

This has been shown at some length elsewh@éykl]. The aT (T+T)
entropy generation rate is referred here to the unit mass flux o
of the driving fluid, hence the specific entropy dimension ofand the first integral
the quantityS,. The quantityS, should be distinguished o2
from the specific entropy of the driving fluid, The entropy - i'; T-L=c T (20)

generatiors, is the strictly quadratic function of the process aT (T+T)?’
rate,u=dT/dr, only in the case when the work is not pro- )
the equalityT+T=T¢ in Eq. (15). For the active heat trans- duasistatic state changes, when the ratésdr vanish, E
fer (nonvanishingz) the entropy production appears to be aVanishes t0o, hende is a dissipative quantity. An equation
nonquadratic function of rates, represented by the integrantp” the optimal temperature follows from the conditiéh
of Eq. (15). =h
/ €
IV. BASIC PROPERTIES OF EXTREMAL TRAJECTORIES T: llc‘rezg-r’ (21)
— + ./

Applying the maximum operation for the fundamental 1= hieT
functional (14) at the fixed end temperatures and times, it isand the integration of this equation for the fixed-end bound-
seen that the role of the firgpotentia) term is inessential, ary conditions leads to Eq18). The coefficients is a pro-
and the problem of the maximum released work, #@xfs  cess intensity constant, which can be determined from the
equivalent with the associated problem of the minimum enyhoundary conditions of the fixed-end problem,
tropy production. Similarly, performing the minimum opera-

tion for the negative of this functiondthe role of the first CInTYT
term is inessential agajirit is seen that the problem of the I P (22)

minimum supplied work, mintW), with the inverted ther-
modynamic end statets also equivalent to its corresponding ¢ is positive for the fluid heating process, and negative for
problem of the minimal entropy production. This confirms the fluid cooling process. In what follows we shall assume
the crucial role of the entropy generation minimization in the+' =0, then the total duration will be represented by the time
context of the extremum work problems, for each mode ofr'.
the process. The consequence of this conclusion is that a Equation(21) proves that, for the sante the heat-pump
problem of the extremal work and an associated fixed-entheating processes run faster than the engine cooling pro-
problem of the minimum entropy generation have the sameesseslarger ¢ and shorter durations in the engine case than
solutions. Yet considerations involving the entropy produc-in the heat-pump cageOn the other hand, as shown by the
tion are unnecessary when the work functionals are given. function E(&)=cTe£?(1+ £) 2 obtained from Eq(20), for

For each process mode, the work extremization problemthe two values oft of the same magnitude but of opposite
can be broken down to variational calculus for the Lagrangsigns and for the same durations, the valbesh are larger
ian for the engine mode than for the heat-pump mode of a pro-
cess with the same initial and final thermodynamic states.
This property is valid in spite of the fact that the engine
modes, which drive the process thermodynamic state from,
say, A to B, and the heat-pump modes, which drive the in-
The Euler-Lagrange equations for the problems of extremaberse process fromB to A, are described by the common
work and the minimum entropy production lead to the samework formula and share the same autonomous trajectory for
second order differential equation the functionT(7).

Te .
ch(l— )T. (16)
T+T
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V. TOWARD CHARACTERISTIC FUNCTIONS Indeed, since for an arbitrary quantity for the same change
VIA DYNAMIC PROGRAMMING of the end states and times, the components of the vé@ctor
=(T, ), within the same mode of the system the following

The problem of generalized availability falls into the cat- holds:
egory of certain finite-time potentials, an evergreen problem '
of contemporary thermodynamif24]. The power of the dy-
namic programmingDP) method as applied to problems of maxXWri t17= —min( — Wi 71]; (25
this sort lies in its important property: regardless local con-
straints on controls or state variables tbptimal perfor-  the common extremal function(',T",7T') describes the
mance functions satisfy an equation of Hamilton-Jacobitwo modes, yet, in order to satisfy the second law of thermo-
Bellman (HJB equatioh with the same state variables as dynamics, each mode is accomplished in different regions of
those for the unconstrained problem. Onlymericalvalues  the spaceT. Clearly, the quantity describes thextremal
of optimizing control sets and those of the optimal perfor-value of the work integraW[Ti,Tf], Eq. (10). It character-
mance functions differ in constrained and unconstrainedzes the extremal value of the work released for the pre-
cases. Although in the case of pure heat transfer problerscribed temperaturéE and T* when the total process dura-
most components of the solution can be obtained analytition is 7'~ 7. (The invariance of the integral with respect to
cally, even then there exist formulations in which the anathe variation of one of the end times when the total duration
lytical solutions are not possible. These include free boundis fixed is consistent with the existence of the energylike
ary conditions, non-Newtonian heat transfer and constraintmtegral for the problen).
imposed on the rate change of state, and the state {tself  Here this problem is transformed into the equivalent prob-
rate change of the temperature amditself in our one- |em in which one seeks the maximum of the final work co-
dimensional cage Otherwise, the state function property of ordinatex{ =W for the system described by the following
dynamic programming potentials should prove to be veryset of the differential equations:
suitable for more complex problems, such as those with mass

transfer and chemical reactions. Therefore, any test of the dw Te

HJB method in the context of the pure heat transfer problem R c( 1— )UEfO(T’u)’ (26)
and associated exergy is highly desirable. This test should dr u+T

initiate a systematic search toward properties and implica-

tions of HIB equations in thermodynamics. In particular, the dT

test performed in this work shows that our problems may be - u=f,(T,u), (27
correctly described by two kinds of HIB equations: a back-

ward HJB equation and a forward HIB equation. The former

is associated with the optimal work or exergy as an optimal dx,

integral function () defined on the initial stategempera- EZlEf2(T’U)’ (28)

ture9, and accordingly refers to the engine mode or pro-

cesses approaching the equilibrium. On the other hand, thfeh . .
. 1 e state of the above system is described by the enlarged
forward HJB equation deals with the exergyork) as the state vectoX which is composed of the three state coordi-

function (—1) defined on the final states, and accordinglynatesx —W, X,=T, andX,=r. The designatiorf o(T,u)
YN0 ] 1— 1y 2— T. 0 y

lri%f:iarfnt(() the geat-;ugr]p mo:t? IO: prO(l:Iezs;]s Iea}[/ilrgglthereqqg used for the work production intensity in the integrand of
um {(see Sec. equentiyl 1S called the optimal per- e \work integral. The last equation of the set states that the

formance function for the V\_/ork_ integral. . state coordinat&X,= 7 has been chosen as the independent
Among the work extremization problems considered, the

. . . . variable of the system. The single control variable
problem of the maximal work deliverigconstrained or notis B .
. , =dT/d7 (the rate of the temperature change of the driving
governed by the characteristic function

fluid in the nondimensional contact timg is the process
control for the system in which the temperature changes in
the space. Supposedly, more involved models describing ex-
g ] tensions of this problem may exist, with a vector of control
r

I(Tfle,Ti,Ti)EmaW\hTi,Tﬁ

i

= max f _

Tl

- ] . generalized process.

In Eq. (23), u=T is the rate control variable defined by Eq. = \while the knowledge of the characteristic functioonly

(8). This equation refers to the engine mode or to processeg syfficient for a complete description of the extremal prop-
approaching equilibrium. For the heat-pump mode and progties of the problem, other functions of this sort are none-
cesses departing from equilibrium, one can define the optiheless very suitable for the problem characterization. We

e

u (23)  variablesu, hence the symbal rather tharu is used in our

T+u i
general formulas below, wheteis the control vector of any

_C(l_

mal function as now introduce the optimal performance functions, respec-
fp i tively, for the initial and final work coordinate®' and®',
=1(7, T, 7, T)=min(—=W,ti.11) One of these function®', works in the space of one dimen-
Tf Te sion larger thar, and involves the work coordinatge=W
:min{fic(l—TjLuudr]. o _ o
T maxW'=0' (W 7 T, Th=wi+1(7,T, 7 1.

(24) (29
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This structure is the consequence of the fact that the staie an admissible sdt), which makes the final work coordi-
variableW is not explicitly present in the rates of the state nateXO(rf) W' a maximum or the initial work coordinate,
equations(26)—(28). In this paper we do not consider more Xq(7')=W', a minimum. We use the enlarged state vedtor
general cases. as the vector including the work coordinatg=W and the
In still enlarged space of variables\(,7,T',W',7",T")  coordinatesT and 7, and the optimality principle in a rela-
we also introduce thénonextremal wave-front functionvV  tively seldom form which links the original and dual optimi-

defined as zation problem. This form states that thptimal final value
; i g ] i Do g of an optimized quantity is a function of the initial state,
V=W -0'W, 7. T, 7, T)=W -W—I(7,T',7,T). whereas theptimalinitial value of the optimized quantity is

(300 a function of the final state. Accordingly, the “original”

Its two mutually equal maxima, at the constavitand at the problem of the maximal final work coordinate is described

constant Wf, are desqribed by the extremal functions bg ﬂ;e fung;ltion(af'()é')z'_(W'I,T',_'If')l, qu_((zg), ;_md ths
VW, AT 7 T =Vi(#, T, W, 7 T7)=0, which vanish ual” problem of the minimal initial work coordinate by

identically along all optimal paths. They are associated, ret® function®'(X")=0'(W',7,T"), Eq. (31. In the first
spectively, with maximum of the free final coordinaté in function the complete set of the initial coordinates must ap-

the subspace of variabIeW(,ri,Ti,Tf,Tf) and minimum of  Pear, in the second one t.he co_mplete set of the fma! coordi-
free initial coordinata in the Subspace/r_‘('Ti,Wf'Tf,Tf). nates must be used. Taking this into account, we will occa-
Regardless the state variables are constrained or not, tﬁéonally omit for brevity of formulas the remaining variables
partial derivatives of the extremal performance functih n these functions, which can be regarded as parameters. We
with respect to its “working stateTthe initial enlarged state apply the original and dual form of the optimality principle

(W,7,T)] and those of the wave-front functiod=W"' respectively for the initial and final part of a path, to show
—"(\}vi 7,T...) do coincide modulo to sign. One can that the conclusions obtained from DP equations can be read

irrs s he negat para g, 1, o6, 5 e s, conmen, v fon, o
—oVIor, and— gV/dW', instead of9@®'/9T', 9@'/97', and ’ )

30'/dW" in any equation of the backward DP algoritfithe Idaerggg dst’aﬁ(i/z(r:;rlllzrl:r?lkj)zl tfoog'rng eV>:/tre"|!1? ;?; &ce%gg_m—
standard algorithm in which the initial set of the coordinates P 9 M

Wi, T, and7 forms the state variablgs tonicity property in time is the suitable limitatignwe will
e assume the time coordinateas the independent variable.
On the other hand, within the same mode, one can als

. o S{Ve also assume that the raté\V/dr= dxo/d7 is known in
formulate a dual problem of a minimal initial work coordi-

nateW', when the final work coordinate/’ is fixed. This the form fo(X,u)=—L(X,u), whereL is the integrand in

minimum is described by the extremal performance funcnor’Eq (12) with T=u. By passing to the usual residence time
(in secondsand taking into account the explicit presence of

min, W=0" (W' 7 T/, 7 T)=W—1(+, T, 7, T, transfer coefficients irfi;, one could admit the possibility of
(31 “aging” of the system. However, this extension is omitted in
o _ this paper. While below we derive the DP equations for
which is related to the wave-front function as follows O(X') or ©(X" only, the related equation for the integral

V=0 (W T 7 T) - W=W—W—1(r.) T 7T work function I (T',t', T",t") in the narrowed space of the

B o coordinates T, ), which does not involve the coordinafé,

(32 follows immediately from the conditio=0. Our main task

[compare Eq.30) for V in terms of ®']. Of course, the is now to derive the HIB equations as the basic quasilinear
following equalities hold along an extremal path: partial differential equations of the considered optimal con-

) o : o trol problems.
maV =W —1 (7", T", 7, T) =W —minW -1 (', 77,7, T")

=0, (33 VI. DYNAMIC PROGRAMMING APPROACH
TO HJB EQUATIONS

They can be written in terms of the wave-front functiras

) The problem can be treated mathematically as follows.
follows:

Let us write our system of the three state equatifibgs.
max\/:ma){wf_wi_|(7_f’-rf'7_i’-[—i)}:0’ (34) (26), (27) and (28)] with the state variableXy=W, x;=T
andx,= 7 in a general form
Tr?e partial derivatives of the extremal performance function X
®" with respect to its coordinates of the working stktee B8 _ _
final coordinates\V', T, 7') which are varied in the forward dr eXu =012 (35)
DP equatiohand those o¥/=0®f—W' do coincide. One may
therefore use the partial derivative®//dT', oV/ar', and (f,=1). Let us assume differentiability of the optimal per-
aVIoW'" instead ofd®"/dT", 90"/ 97, anda®'/oW' in any  formance function®'(x') and consider the contral in in-
equation of theforward DP algorithm(the algorithm where tervals(7',7+ A7) and (7 +A7,7'), whereAr is a small
the final coordinateyV', T, and 7' are the state variables —quantity. In order to take the variations of the initial state in
These properties are exploited below. 0'(x') into account, we assume that the “long,” final seg-
We search for a dynamic programming equation by apment of trajectory, forr in the interval(7 + A7, 7,77, is
plying Bellman'’s optimality principl¢16,17] for a controlu, optimal. The performance index of this segment equals
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O'(x'+ Ax). Therefore the optimal final work for the whole . . i )

path in the interval 7', ') is the maximum of the criterion max; W'=max;} 0'(X)+ —-r X, fe(X,u)A7+0(e%)

o S ) . 41

W=0I(X'+AX)=0" (W +AW, T +AT,7 +A7). (1
(36) and for the variations of the final point

The maximization is with respect to the control vectorat ; 90"

the constank', for the small initial(nonoptima) part of the minyt W'= m'”uf[ O'(X' e~ fﬁ(x WAT+0(e?) |
path. It is performed at the constaXt subject to all con- (42)
straints, i.e., including the differential transformations of

state, Eqs(26) and (28). Restricting to linear terms of ex- Equations(41) and(42) can then be simplified on the basis
pansion of®', Eq.(36), in Taylor series one finds of definition of the optimal performance functio®' and

O, Egs. (29 and (31), and using the property that these
i functions are independent of the contwolAfter reduction of

=0'(X )+ r AXz+0(e?) O©' andO' and the division of both sides of Eq&ll) and
Xp (42) by A7, the passage to the limik7—0 subject to the
L) 90! condition lin{0(¢?)/A7]—0 yields, respectively, the back-
=0 (W, T, 7)+ i AW+ - AT ward and forward HJB equations of the optimal control prob-
lem.
C) ) For the initial point of the extremal path, one finds, as the
+ o7 AT+0(e%). (87 backward DP equation,

a0 o
f5(X, u)) max,.(——W'(T',u')

In Eq. (37) the symbol 0£2) means second-order and higher max;i [ ﬁg W
J

terms. They possess the property [I062)/A7]—0 when

A7—0. o"@i PreY.
Similarly, one may consider variation of the final coordi- — Ti (Thu )+ —

nates of the state vectot=X". One then assumes that a ‘9T

“long” initial segment of a trajectory is optimal. The per- do' dv

formance index of this optimal segment equals (X =max;, —r)z—mlnui(—.>

—AX). In this case the contrah=u’ should be properly dr dr

adjusted along a “short” nonoptimal final part of the path.
The optimal initial work coordinat®/', for the whole path in =max,i
the interval(7', 7"}, is the minimum of the criterion

av )_

On the other hand, for the final point of the extremal path,

—m>f f —mf f f f
W=0'(X'=AX)=0 (W —AW,T'~AT, 7' ~Ar). one finds the forward DP equation

(38)
L . . . . aef aef forf
Now the minimization is with respect to the conttd| at the mingf — T fa(X,u) p = —max,| — W W (Th,uh
constantX’ and subject to all constraints, i.e., including the B
differential transformations Eq926)—(28). Restricting to 90t . 90 f
linear terms of expansion @', Eq. (38), in Taylor series + T T uf)+ &—r]
one obtains T
o ol
. G =mint
W=07(X")~ — AXg+0(c?) “Idr
b _ dv
fonf Tf 90" I
=0'(W'T 'T)_WAW
dv
90" 90" =—max| 5| =0. (44)
——TFAT —f'AT+0(8 ). (39

The properties o/=W'—0'=0"—W' have been used in
In Egs. (37) and (39) the state changes are connected withthe second lines of the above equations. The rd¥s/dr

controlsu by the state equation85); hence for smallA7, should necessarily be considered in terms of the state vari-
ables and contr@). One concludes thahe optimal motion
AXg=Tfg(X,u)A7+ 0(&?). (40 of the wave always maximizes the speed of the advancing

wave front dVd ' or the speed of the retreating wave front
After substituting Eq(40) into Egs.(37) and(39), and per- dV/d(—7').
forming the appropriate extremizations in accordance with The partial derivative oY/ with respect to the independent
Bellman'’s principle of optimality, one obtains, for variations variabler can remain outside of the bracket of this equation
of the initial point, as well. Taking this into account as well as using in E48)
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and (44), oVIIW' =—390'1oW'=—1, oVIJW'=30"/gW'

=1, andW=fy=—L, one finds for the extremal work prob-
lem
Y Y : ;
P — +minyi o u+LY(Thu) =0 (maxW'), (45
N + max,i N u' —Lf(TH,u =0 (min W)
art aTt ’ '
(46)

In terms of the integral function of optimal work=W"

—W -V, these equations become, respectively,
A + 7 THEL(THUl) = 4
o T maxi —u o(Thu')y = (47)
A ming| e uf— £ ") [ =0 48
E{‘f’mlnuf ﬁfu o(THu')=0. (48)
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one can solve the above equation in termsi @b obtain the
functionu(z,T). Next one substitutes this function into the
two last terms on the left-hand side of E§D). [This is just
the maximal case of Eq47).]. One obtains then the energy-
type Hamiltonian of the extremal process,
H(T,7,2)=zu(z,T)+fy(z,T). (52
With this Hamiltonian and using=4Jl/JT, one obtains from
Eq. (50) the Hamilton-Jacobi equation for the integtal

al
aT

e
aT ’

=0. (53)

(In our example both functionf, andH do not contain time
explicitly.) This equation differs from the HJB equations as
it refers to extremal paths only, ahtlis theextremalHamil-
tonian. In Sec. VIII we apply the above formulas to our
concrete Lagrangiah=—f,, wheref, is the intensity of
the mechanical work production.

In all equatlons of this sort the extremized eXpreSSlon are A prief heuristic approach to derivation of E@g for a
some Hamiltonians. In fact, they are Pontryagin’s type, nonfixed but otherwise arbitrary mode along the lines of reason-

extremal Hamiltonians. The optimal contrelwhich solves

ing first introduced to variational calculus by Caratheodory is

the optimal work problem is chosen in order to extremize gnsightful [25—27. As follows from the definition of the
Hamiltonian at each point of the extremal path, which meangnaximum performance functioh for the work functional

extremizing the wave-front velocityV/d in the considered
HJB equation. As long as the optimal controls found in

(23) in which the final state is subject to variatiofwhile |
still includes a fixed initial stabe

terms of the state, time, and gradient components of the ex-

tremal performance functioh the passage from the quasi-
linear HJB equation
Hamilton-Jacobi equation is possible.

VIl. PASSAGE TO HAMILTON-JACOBI EQUATION

to the corresponding nonlinear

ma)({u(f)}{ ft:ffo(T,u)dT_ | (Ti,Ti,Tf,Tf)} =0. (54)

The path differentiation of this equation with respect to the
final time 7' proves that the total time derivative batisfies

The process Lagrangians are represented by the rate of tHee equation

work productionf, or the rate of the work consumptioln,

whereL=—f,. For these Lagrangians, the extremum con-

dition of the Hamiltonian of the pertinent HIB equation
(which is, in fact, the Pontryagin's Hamiltoniatinks the
derivatives ofL or —f, with respect to the process rate
=T with the adjoint variable=—dV/dT=24I/dT. For con-
creteness we will work with Eq47), in which the index is

omitted. The maximization of this equation with respect to
the rateu leads to the two equations of which the first de-

scribes the optimal contral expressed through the variables
T andz=4l1/4T,

afo(T,u)

dl
u '

aT (49)
and the second is the original E@7) without the extrem-
ization sign

il
— u+fo(T,u)=0.

a|+
ar  JT

T (50

With the momentum-type variable=l/T, and using Eq.
(49) written in the form

JL(T,u)
ou '

afo(T,u)

ou (52)

di(t, 7, 1,7

maxJ(ff)(Tf,uf)——de—}:O, (55)

whereas for the free initial state of the dual problem and the
same mode of the process

di(t, 7,1, 7

- ]:o. (55)

minu[ —fh(T u')—

Equation (55) describes the vanishing maximum of the
power f, gauged by the total derivative of the optimal per-
formance function. Expanding in E¢G5) the total time de-
rivative and changing sign@ssociated with change of the
extremum operationyields

al

—f + —Tf (56)

ff)(Tf,uf)] =0

mlnuf[
In view of the equalitiesdl/dr'=—dl/ar and 9l/dT =

—dl19T' the above equation reads in terms of the initial state
quantities as follows:

&I &I I i i i — /
ﬁ—&—TrU—fO(T,U) = (56)

minui| -
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which is identical to with Eq(55’) and equivalent with Eq.
(47). The latter leads to the Hamilton-Jacobi equatib8).

VIIl. HAMILTON-JACOBI EQUATIONS FOR EXTREMAL
WORK AND GENERALIZED AVAILABILITY

STANISLAW SIENIUTYCZ
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one has to minimize the time integral over the Lagrangian
L=—"fo(T,u), and that procedure leads to the extremal
function —I(T',7,T%,77). The adjoint variables and the
Hamiltonian change their sigris = —z, wherex = —49l/4T.
Consistently, the new Hamilton-Jacobi equation takes the
form of the equation given above. See our complementary

Now the general procedure described in Sec. VIl is apwork [10,11 for related information about the canonical

plied to the basic integrdfl0) written in the form

f T®
W|-|—i.'|'f|:J:ri _C(l_ T+U

whose extremal value is the functidgT',7,Tf,7'). The
momentumlike variabléequal to the temperature adjoimns
then

urdr,

(57)

B &fo_ 1 TeT £g
2= = mre) 58

Hence the rate contral in terms of T and its adjointz
=91/9T,

TeT 1/2
u:(1—z/c) -7

The energylike functiorE(T,u) of the problem is the rate
representation of the extremal Hamiltonian,

(59

2

(T+u)?
(60)

an aL .
E(T,u)=—ﬁ u+f0=ﬁ u—L=cT

The extremal Hamiltonian itself iE expressed in terms of
the adjointz,
T 1/2
| -

e 2
(1—2/0

. (6)

H(T,z)=cT %1—2z/c)

from which the extremal Hamiltonian is described by the

simple formula
H(T,2)=cT [ JTT-T\(1-2/c)]?
=c[T¢—T(1-z/c)]%

(62

equations and the role of the Legendre condition.

IX. HAMILTON-JACOBI APPROACH
TO MINIMUM ENTROPY GENERATION

Our analysis based on E(L4) has shown that the varia-
tional fixed-end problem of the maximum waovK is equiva-
lent to the variational fixed-end problem of the minimum
entropy production. Let us, however, compare the Hamilton-
Jacobi equations of these two problems. The specific entropy
production is described by the functiorjdll]

A i u?
S,= fo L, dr= jo C—T(T+u) dr.

Assume that the minimum of this functional is described by
the optimal functionl (T',7,T",7'). We shall find the
Hamilton-Jacobi equation for this function. For an extremal
path the partial derivativell ,./dT satisfies the maximum
condition for the corresponding Pontryagin’s Hamiltonian.
This condition yields

(65)

A, L,
2= 9T o

(66)
wheredlL ,/du is the adjoint variable of the entropy genera-
tion problem, or the momentum-type variable ./dT. In
our case

L, T2 6
T W) (67
from which
mz \/1—TZU/C. (68)

Accordingly, the Hamiltonian in terms of the derivative It follows from the Legendre necessary condition for a mini-

dllaT is

H(T,al/aT)=c[JTe— JT(1—c Lal/aT) ]2

(63)

mum of the functional65) that the suml +u must always
be positive, the condition which limits considerably the val-
ues ofz, wheneveu is negative as in the case of the engine
cooling. From Eq(67) the positive valuegL ,/Ju=z, cor-

By changing signs at the adjoint variables one could obtain fespond to the heating of fluitheat-pump mode wheff

negatively-definedH which could reflect the energy dissipa-

tion; however, we retain the Hamiltoni#63) positive. Such

a quantityH is still a well-defined property of the dissipative

process.

The Hamilton-Jacobi partial differential equation for the

maximum work problemthe engine mode of the systgm
deals with the initial coordinates, and has the form

alar+c[Te=\T(1—c Lal/dT)]?=0.

(64)

>T¥®) and the negative values pf correspond to the cooling
of fluid (engine mode whel>T¥€). From Eq.(68), one finds
the rate controu=dT/dr in terms of the temperature and
its adjointz,=dl /4T,

1

This equation is valid for every mode of the system. The

Equation(64) is valid not only for the engine mode but also energylike integral for the entropy production functional, Eq.
for the heat-pump mode. Indeed, for the heat-pump modé65), is
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L, u? “reversible” thermodynamic power. From the formal view-
E,=7gu-Lo=cC TFu2 (700 point the thermodynamic case is more special than the elec-
tromagnetic case, not only because the former is one dimen-
Moreover, from Eqs(60) and (70) the following equation ~sional but also because a thermodynamic counterpart of the
holds: the electric potentiadp does vanish and the classical thermo-
dynamic work acquires the potentidpath-independent
E=T°E,. (7))  property. Leaving aside these differences, however, the for-

] . ] mal consequence of the linearity of the reversible term
The equation means that the equalily-E,, is valid, where  _ .y _ 1¢/7)T with respect toT is that this term does not
A e H _ ! —
E,=T°E,, and the equationg(u)=h andE (u)=h have nflyence the dissipative energi€sandE,,, Egs.(60) and
the same solutions with respect to the ratedT/dr. This (70); hence the equalifE=E’ described by Eq(71) is
is, of course, the formal consequence of the physical equivazyjig. et the considered term of Eql4) influences the
lence between the problem of the minimum entropy generégefinition of the canonical momenta, and this is why it
tion and the problem of the extremum work. This equiva-cases the different forms of the Hamilton-Jacobi equations
lence can be stated in the form of equali®l) for each 5 the work and entropy generation, Eq64) and (74).
mode of the system. o Moreover, the potential nature of the classical work integral,
The entropy production Hamiltoniad,, is the represen-  gq (13), causes the identity of the extremal trajectories for

tation of E,, in terms of T andz,, the work extremization problem and those for the entropy
2 2 generation minimization problem. The potentiality of the
H =c YU _ c T T T classical work integrall3) is the property which renders the
T (T+uw)? V1-Tz,/c V1-Tz,/c analogy considered trivial, since the thermal counterparts of
(720  the electric and magnetic fieldlsandH vanish identically in
. the thermodynamic problem.
from which The canonical transformation theory can be applied in this
H,=c(1—1-Tz,/c)2 (73) case which leads to the conclusion that the lost pol/er

=T°L, can be gauged by addition of the total time deriva-

Clearly, from Eqs(66), (67), and(70), the case of vanishing tive d€)/d7 of a gauging function(}(T). Taking into ac-

z,, andu implies H,=0 identically. This case refers to the count the change in the type of the extremum operation, in
reversible quasistatic processes. order to preserve unchanged equation of the extremal curve,
The Hamilton-Jacobi partial differential equation for the the following general equation must link the momentum-type

minimum entropy generation problef@ach mode of the sys- Vvariables:

tem is oo o0 oL,

N lar+c(l—1—c ITal ,/dT),=0. (74) au_ JdT au’ (75)

This equation can be compared with E§4), which de- When the above equation is applied to our thermodynamic
scribes the extremal work problem in terms of the workproblem, the result is
HamiltonianH, Eq. (63). In spite of the equalitE=E, the

partial derivatives of both extremal functions with respect to TT | dO(T) cT° T?
T, 91/9T and|,/4T, differ. Since, however, the two func- 1T T2 91 T | (T2
tionals (that of the work and that of the entropy generation (76)
yield the same extremal, the connection between them
should exist. This connection is determined in Sec. X. This relationship links the Lagrangians of the entropy gen-
eration and work. The equalitf, =E proves that we are
X. AN ANALOGY WITH A PARTICLE IN A VECTOR dealing with an autonomous gauging functin hence the
FIELD AND GAUGING THE ENERGY DISSIPATION time independent derivativéQ)/dT in Eq. (76). The above
] . equation yields
An interesting formal analogy can be observed between
the thermodynamic system considered and a microscopic dQ(T) T®
system which contains a particle in a vector field, say, an aT =-c{1- ?>, (77

external electromagnetic field. In the latter case, the addition
of the vector potential terh-v to the particle Lagrangian from which after integration betweeH and T,
does not change the value of the energy of the particle in the
electromagnetic field. Since, hovever, the teknv changes
the canonical momenta, the Hamilton-Jacobi equation of the
particle contains the vector potential, and thus it differs
from the corresponding equation of the particle when thewhich is just the classical work or thehangeof the classical
field is removed. thermal availability, Eq.(13). Therefore the change of the
In the thermodynamic case considered, the role ofthe  classical available energy is just the Hamiltonian-preserving
term is played by the productc(1—T®T)T, which ap- gauging function for the functional based on the entropy gen-
pears in the first line of Eq14), as the term representing the eration intensityl., =T°L,. Equalities(71) and(76) may be

Q(T)=C(Ti—Tf)—cTeIn(_l—_f>=—AB(T), (78
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viewed as equations linking the two functionals, the entropyfor the heat-pump mode of the system. Eer0 the change
generation functional and the generalized availability func-of the classical thermal availability, a positive quantity, is
tional, along an extremal. Extraction of the potential workrecovered.

AB from the total work of the process is that form of gaug- From Eq. (80), with T'=T and T'=T®, one finds the
ing which preserves the same extremal trajectories and dislissipative exergy of the engine mode

sipative Hamiltonians of the two fixed-end problems consid-

. Thi lusion is also ill h lati i T
ered is conclusion is also illustrated by the relation E(T,T% 7, 77) =c(T—T®)—cT® In —

between the two available energy functions, generalized and Te
classical, as described by E@4).
[In(T/T®)]2
e e e v SR
XI. PRINCIPAL POTENTIAL FUNCTIONS T

FOR EXTREMUM WORK

AND GENERALIZED AVAILABLE ENERGY E, is the generalizedrreversiblg exergy of mass unit which

includes the effect of dissipation caused by finite rates in the
One can now discuss the solutions of the Hamilton-Jacobpoundary layers of the real fluids. It may be verified that this

equations for the considered problems. From E@), by  function satisfies the backward Hamilton-Jacobi equation,

integration along an extremal path, one finds the functiorwhich is Eq.(64) with respect to the initial state and for

which describes the optimal specific work, =E,. Otherwise, one obtains the exergy of the heat-pump
mode for the function—I(T',7,Tf,7") with T'=T® and T
i7f i f i f T Ti =T
|(T,T,T,T)—C(T—T)—1+§C|n_l—_f. (79 .
E (T, T8 7, 7)=c(T-T®—cT®In T
This is the expression which generalizesangesof the
available energy to processes with a finite rdiédr=£T. [In(T/T®)]?
In a finite-rate process this work depends explicitly on the +cT® A In(TTY (82

process duration.
~ From the above equation and after using the end condirhjs function satisfies the forward Hamilton-Jacobi equation
tions to evaluate the intensity in terms of the boundary o Eq. (64) with respect to the final state and fbe —E,.

temperatures and times, Taking into account that the last term of the above equation

i i contains the minimal integral of the entropy production,
CIn(TUTY  In(TYTY

i =~ 71— (each modg (22) S.(T 77 1) =c [In(T/T®)7? -
o T T T T In(TITY)
the extremal specific work between two arbitrary states fol- o )
lows for every process mode in the form the general formula for the dissipative exergy is
i T
) ) . T e fy_ _Te\ _~TE [
(T T 7 ) =e(T =T —cTo In BT TLr)=e(T-T)=cToIn 7o
ey T 2 ope () HINCTITO P
+C(Te_ g S =) Tin(/To)
i =E(T,T®®)xT°S,, (84

. T
— i_ 7T\ _ e
¢(T=T)—cTIn Tf whereE,(T,T¢ ) is the classical available energy of mass

unit, B, and we have assumed without any losses in gener-

+cTe _) In _If ality that 7' =0. In the above equations the upper sign refers
1+&)°° T to the heat-pump mode, and the lower sign to the engine
Ti mode.
—¢(T=TH—cTeIn = An alternative form of the generalized available energy
T contains theheight of the transfer unit i,=£/7 and the

[In(T/T) ]2 contact lengthC
_ e
i AU M

Hr[In(T'/T®)]2
EW(TH T8 1) =BT T8 0) =cTe oo (7T

The particular extremal work which describes the general- (85)
ized availability should contain the environment temperature

as one of the boundary states. The generalized availabilityhis form shows that the classical availability yields an exact
function is the maximal workW,.,=I(T,7,T",7) with T'  estimation of the extremal work for smafly, i.e., for the
=T andT'=T® for the engine mode, and the negative mini- excellent transfer conditions, or for infinitely long contact
mal work (—W)min=—1(T',7,T,7) with T'=T® and T'=T times of the energy exchange. The generalized availability of
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the engine mode, the exergy functi=(W)max, Which ~ pared with corresponding inverse processes, which ap-
defines the upper bound for the mechanical work released iproaches the equilibrium. The first sort of processes
a finite time, is necessarily smaller that the maximal work ofcorresponds with the heat-pump mode, associated with the
classical thermodynamics. Otherwise the generalized avaipupply of the work to the system, the second sort of
ability of the heat-pump mod&, = (— W), which defines  processes—with the engine mode, characterized by the de-
the lower bound on the work consumption, can be signifilivery of the work from the system. Speaking in more gen-
cantly higher than the minimal work of classical thermody-eral terms, processes departing from equilibrium may be re-
namics. For state changes occurring in short times, this worBarded as those in which the creation ofn@nequilibrium

may differ from the classical work substantially. These “ratestructure takes place. Otherwise the processes approaching
penalty” effects are a consequence of nonvanishing entrop§he equilibrium may be regarded as those of the destruction

generation in all finite-time processes. of the structure.
While in the classical reversible thermodynamics the two
XIl. ENHANCED BOUNDS modes can be accomplished with exactly the same magni-
FOLLOWING FROM SECOND LAW tude of work, in the generalized theory, which includes the

effect of dissipation, the works consumed and produced in

The general thermodynamic result in the second line othe two modes operating between the two fixed states are no
Eq. (84) is in the complete agreement with the classicallonger equal. A significant decrease of the maximal work
Gouy-Stodola law13,14. This law is, in fact, a formulation received from the engine system and an increase of the mini-
of the second law of thermodynamics, which links losses oimal work added to the heat-pump system is shown in the
the extremal work, finiteness of the process rates, and thiigh-rate regimes and for short durations of thermodynamic
related entropy generatio®,,. However, the classical for- processes. These results show that limits known from the
mulations of the second lawicontained in the adduced classical availability theory should be replaced by stronger
works, for examplg provide neither analytical expressions limits obtained for finite-time processes, which are closer to
for the nonclassical component of the availabilignd the reality. These limits are such that the structure creation pro-
related quantitys,) nor information about the time evolution cesses consume in a finite time more mechanical energy than
of the system. For these purposes a dynamical model of théhe mechanical energy which could be recovered in corre-
evolution and the solution of the related Hamilton-Jacobisponding processes of the structure destruction. This is an-
equationsuch as Eq(64)] are necessary. Therefore the HIB other manifestation of the asymmetry inherent in the macro-
theory becomes an important ingredient of nonequilibriumscopic world, which is explained by the second law of
thermodynamics in which certain post-thermostafiate  thermodynamics.
penalty terms are sought for generalized thermodynamic po-
tentials, i.e., when classical thermodynamic potentials are ACKNOWLEDGMENTS
generalized to finite-time durations.
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